Space Industry and Business News  
CARBON WORLDS
Sculpting with graphene foam
by Staff Writers
Houston TX (SPX) Jun 19, 2018

illustration only

Rice University scientists have developed a simple way to produce conductive, three-dimensional objects made of graphene foam.

The squishy solids look and feel something like a child's toy but offer new possibilities for energy storage and flexible electronic sensor applications, according to Rice chemist James Tour.

The technique detailed in Advanced Materials is an extension of groundbreaking work by the Tour lab that produced the first laser-induced graphene (LIG) in 2014 by heating inexpensive polyimide plastic sheets with a laser.

The laser burns halfway through the plastic and turns the top into interconnected flakes of 2D carbon that remain attached to the bottom half. LIG can be made in macroscale patterns at room temperature.

The lab extended its technique to create LIG on wood and even food, but 3D objects of pure graphene were less practical until now, Tour said.

"Now we have built a prototype machine that lets us make graphene foam into 3D objects through automated successive layering and laser exposure," Tour said. "This truly brings graphene into the third dimension without furnaces or the need for metal catalysts, and our process is easily scaled."

The new method is based on laminated object manufacturing, in which layers of a material are assembled and then cut to shape. In this case, the bottom LIG layer remains attached to its polyimide base. A second layer is coated with ethylene glycol and placed facedown on the first, like a jelly sandwich. Its polyimide top is then burned into graphene; the process is repeated until the block is complete.

The ethylene glycol binder is evaporated away on a hot plate, and any remaining polyimide can be removed in a furnace. That leaves a pristine, spongy carbon block, said Duy Xuan Luong, a Rice graduate student and co-lead author of the paper. The Rice lab stacked up to five layers of foam and then used a custom-built fiber lasing system on a modified 3D printer to mill the block into complex shapes.

The lab assembled proof-of-concept lithium-ion capacitors that used 3D LIG as both anodes and cathodes. The anode's gravimetric capacity of 354 milliamp hours per gram neared the theoretical limit of graphite, while the cathode's capacity exceeded the average capacity of other carbon materials. Full test cells retained about 70 percent of their capacity after 970 charge-discharge cycles.

"This is excellent performance in these new-generation lithium-ion capacitors, which capture the best properties of lithium-ion batteries and capacitor hybrids," Tour said.

The researchers then infused a block of 3D LIG with liquid polydimethylsiloxane through its 20- to 30-nanometer pores. This created a stronger, still-flexible, conductive material without changing the original foam's shape. From this material, they made a flexible sensor that accurately recorded the pulse from the wrist of a volunteer and said further calibration of the device would let them extract blood pressure from the pulse waveform.

Research paper


Related Links
Rice University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CARBON WORLDS
Captured CO2 can be securely stored underground, study shows
Washington (UPI) Jun 13, 2018
Carbon dioxide can be safely and securely stored underground for thousands of years, according to a new study out of the University of Aberdeen in Scotland. Carbon capture technologies have proven their ability to pull CO2 from the air, and they're now becoming a reality, with some facilities already operating in Europe. But questions about how the captured carbon will be stored have remained. Scientists at Aberdeen analyzed several carbon storage methods used by energy companies and tes ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Dutch software makes supercomputer from laptop

Ground-breaking discoveries could create superior alloys with many applications

Scientists predict a new superhard material with unique properties

Modern alchemists are making chemistry greener

CARBON WORLDS
New Land Mobile Technology Driving The Need For Modern Satcom Capabilities

On-the-move communications system set to field this fall

Lockheed Martin's 5th AEHF comsat completes launch environment test

IAP Worldwide Services tapped for satellite systems

CARBON WORLDS
CARBON WORLDS
Woman drowns in Prague drains playing GPS treasure hunt

What exclusion from Galileo could mean for UK

GMV competing to develop the Galileo Ground Control Segment in brand new premises

Research shows how 'navigational hazards' in metro maps confuse travelers

CARBON WORLDS
UK jet expert held over 'Chinese plot for military secrets'

Boeing awarded $1.5B for Hornet, Growler upgrades

Manager of China aircraft carrier builder under graft probe

Boeing, others assessing impact of US-China tariffs

CARBON WORLDS
Spintronics: Controlling magnetic spin with electric fields

Building nanomaterials for next-generation computing

Novel insulators with conducting edges

Toshiba completes $21 bn sale of chip unit

CARBON WORLDS
Ammonia distribution in Earth's upper atmosphere explained

Close encounters of the fishy kind

Decades of satellite monitoring reveal Antarctic ice loss

GRACE-FO turns on 'range finder,' sees mountain effects

CARBON WORLDS
Delhi reels as summer haze catches Indian capital off guard

EU Parliament to phase out plastic water bottles

Recycling plastic -- Japan style

Macron's environmental record under fire as critics tally 'retreats'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.