Space Industry and Business News  
WATER WORLD
Scientists track speed of powerful internal waves
by Staff Writers
Miami FL (SPX) Oct 15, 2015


These two figures show the internal waves at Dongsha Island on April 23, 2010, as seen by the radar on TerraSAR-X in its conventional mode of operation (left) and in the experimental new mode that permits direct velocity measurements (right), with the measured surface velocities shown in color. Red and blue colors indicate surface velocities of about 0.5 m/s to the left and to the right, respectively. The shown area is 30 km + 80 km. Dongsha Island, which is about 2.7 km + 0.9 km (1.7 mi + 0.6 mi) in size, can be seen near the center of the image. Image courtesy German Aerospace Center (DLR) 2010. For a larger version of this image please go here.

For the first time researchers directly measured the speed of a wave located 80 meters below the ocean's surface from a single satellite image. The new technique developed by researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science is a major advancement in the study of these skyscraper-high internal waves that rarely break the ocean surface.

"This is the first time internal wave velocities could be calculated from data acquired during a single overpass of a satellite," said Roland Romeiser, associate professor of ocean sciences at the UM Rosenstiel School. "This allows us to obtain more accurate information from a satellite that we could in the past."

Using a single satellite image collected at UM's Center for Southeastern Tropical Remote Sensing (CSTARS), the research team was able to determine that a roughly 60-meter high internal wave was traveling at a speed of three miles per hour (1.4 meters per second) near Dongsha Island in the South China Sea. The region is considered to have some of the most powerful internal waves on the planet.

"This is a significant breakthrough using a single image to determine the velocity of a wave below the surface," said Hans Graber, UM Rosenstiel School professor of ocean sciences and director of CSTARS. "This technology offers new opportunities to track the speed of ocean currents or objects moving on or below the ocean surface."

Radar satellites can detect the surface ripples produced by internal waves and the data collected allow researchers to calculate the speed of internal waves traveling below the surface. Prior to the development of this new technology, researchers would have to compare several images taken during multiple satellite overpasses to estimate internal wave velocities.

The radar affixed to the German satellite TerraSAR-X is the first to measure velocities directly during a single overpass but with significant noise. Romeiser and Graber developed a new method to process the data that enhances the internal wave patterns to extract the velocities with unprecedented accuracy. CSTARS is the only place besides the German Aerospace Center (DLR) that is capable of processing these types of images.

Internal waves move huge volumes of heat, salt, and nutrient rich-water across the ocean, which is important to fish, industrial fishing operations and the global climate. In addition, they are important to monitor for safe surface and sub-surface marine operations.

Graber was part of an international research team that spent seven years tracking the movements of internal waves to understand how these waves develop, move and dissipate underwater. The team discovered that internal waves are generated daily from internal tides, which also occur below the ocean surface, and grow larger as the water is pushed westward through the Luzon Strait into the South China Sea. Their findings were published in the May 7 issue of the journal Nature.

A research team led by Romeiser was the first to accurately measure currents from a space shuttle platform between islands off the Dutch coast and the first to make current measurements using the radar on the TerraSAR-X satellite.

The study, titled "Advanced Remote Sensing of Internal Waves by Spaceborne Along-Track InSAR--A Demonstration With TerraSAR-X," appears in the Dec. 2015 issue of the journal Transactions on Geoscience and Remote Sensing, a publication of the Institute of Electronic and Electrical Engineers (IEEE). The study's authors are Roland Romeiser and Hans Graber of the UM Rosenstiel School. The work was supported by grants from the U.S. Office of Naval Research.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Miami Rosenstiel School of Marine and Atmospheric Science
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
Marine mathematics helps to map undiscovered deep-water coral reefs
Plymouth, UK (SPX) Oct 15, 2015
A team of marine scientists has discovered four new deep-water coral reefs in the Atlantic Ocean using the power of predictive mathematical models. Located at depths of up to 1.2km, in seas west of Ireland, the reefs were identified by a modelling system developed at Plymouth University that predicts occurrence according to conditions favourable to coral. Researchers from Plymouth, the Cen ... read more


WATER WORLD
Methodology could lead to more sustainable manufacturing systems

New deposition technique enhances optoelectronic properties of lasers

Mathematicians find 'magic key' to drive Ramanujan's taxi-cab number

Using optical fiber to generate a two-micron laser

WATER WORLD
Southeast Asian nation awards Harris $10 million contract for radios

Harris delivering tactical radios to multiple customers

LGS Innovations enhances ISR technologies

Harris supplying tactical radios to Special Operations Forces

WATER WORLD
Both passengers for next Ariane 5 mission arrive in French Guiana

Arianespace signs ARSAT to launch a new satellite for Argentina

Ariane 5 orbits Sky Muster and ARSAT-2

A satellite launcher for the Middle East

WATER WORLD
Russian-Chinese Sat NavSystem to Launch on Silk Road, EEU Markets

ISRO looking to extend GPS services to SAARC countries

Last of the dozen GPS IIF satellites arrive at CCAFS for processing

Glonass system can fully switch to domestic electronics in 2 years

WATER WORLD
NATO and allied pilots complete Tactical Leadership Program

Advanced Airborne Networking Capabilities Sought for Hostile Environments

German military halts Eurofighter deliveries over flaw

Russian missile firm to hold rival MH17 briefing as Dutch report released

WATER WORLD
Chemical microdroplet computers are easier to teach than to design

EU clears chipmaker Intel's $16.7 bn buyout of Altera

Scientists paint quantum electronics with beams of light

New optoelectronic probe enables communication with neural microcircuits

WATER WORLD
NASA Eyes on Earth Aid Response to Carolina Flooding

New study indicates Earth's inner core was formed 1-1.5 billion years ago

China launches commercial remote-sensing satellites

Indonesia launches indigenous satellite

WATER WORLD
Heavy air pollution in 80% of Chinese cities: Greenpeace

Field widens for environments, microbes that produce toxic form of mercury

Sea turtles face plastic pollution peril

India court approves 'pollution toll' to clean choking Delhi









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.