Space Industry and Business News  
TIME AND SPACE
Scientists separate atoms with smallest sieve ever
by Brooks Hays
Washington (UPI) Mar 20, 2018

Scientists have found a way to turn 2D materials into a sieve capable of separating different atoms from each other.

When pushed through the tiny gap between the layers of 2D materials like hexagonal boron nitride or molybdenum disulphide, the atoms of two different hydrogen isotopes can be separated.

Like graphene, hexagonal boron nitride or molybdenum disulphide form sheet-like layers the width of a single atom. The 2D layers feature unique structural patterns, each with different physical and chemical properties. The layers can be stacked to created unique metamaterials.

Until now, scientists didn't know tiny gaps exist between layers of 2D materials. Advanced imaging techniques revealed the gap, and experiments showed the gap can work like a sieve -- the smallest sieve ever.

Various processes in nuclear, medical and other research fields call for the separation of isotopes, a typically energy-intensive task. From the perspective of classical physics, hydrogen isotopes appear identical. But when their quantum nature is considered, their wave signatures are distinct.

Deuterium features a shorter wavelength than hydrogen, allowing it to be separated through a technique known as quantum sieving. Normally, quantum sieving requires extremely low temperatures.

At room temperature, the separation of distinct atomic wave patterns requires an extremely fine sieve. Until now, scientists were unable to create such a fine sieve.

"Quantum phenomena are very rare at room temperature," Sheng Hu, a researcher at the University of Manchester, said in a news release. "To observe matter waves it is normally necessary to fabricate sophisticated contraptions such as magneto-optical traps or go to cryogenic temperatures. We demonstrate an experimental setup that allows us to see these exotic quantum phenomena at room temperature."

Because deuterium has a shorter wavelength, it slips through the tiny gaps in between the 2D layers, separating from hydrogen.

The breakthrough -- detailed this week in the journal Nature Nanotechnology -- could allow researchers to separate isotopes more efficiently, as well as offer new insights into the nature of quantum particles.


Related Links
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Dressing atoms in an ultracold soup
Houston TX (SPX) Mar 06, 2018
Using lasers, U.S. and Austrian physicists have coaxed ultracold strontium atoms into complex structures unlike any previously seen in nature. "I am amazed that we've discovered a new way that atoms assemble," said Rice University physicist Tom Killian. "It shows how rich the laws of physics and chemistry can be." Killian is the lead scientist on a new paper in Physical Review Letters (PRL) that summarized the group's experimental findings. Killian teamed with experimental physicists from Ri ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
On The Horizon: A Space Renaissance

CosmoQuest releases Mappers 2.0 for crater mapping

A new way to combine soft materials

ORNL researchers design novel method for energy-efficient deep neural networks

TIME AND SPACE
Intelsat EpicNG helping redefine capabilities of airborne applications

Studies prove superior performance of HTS for government customers

Airbus to provide near real-time access to its satellite data

Increasing Situational Awareness with Fortion TacticalC2

TIME AND SPACE
TIME AND SPACE
Indra Expands With Four New Stations The Ground Segment Managing Galileo Satellites

GMV leads a project for application of EGNOS to maritime safety

Why Russia is one step ahead of US Army's plans for future GPS

Europe claims 100 million users for Galileo satnav system

TIME AND SPACE
Leonardo to build 28 helicopters for Qatari military

Senegal helicopter crash toll rises to 8

Lockheed awarded $1.5B contract for work on F-35 air systems

Army taps Airbus for 35 UH-72A Lakota helicopters

TIME AND SPACE
Precision atom qubits achieve major quantum computing milestone

Largest molecular spin found close to a quantum phase transition

Researchers find 'critical' security flaws in AMD chips

New speed record for trapped-ion 'building blocks' of quantum computers

TIME AND SPACE
Full house for EDRS

Scientists accurately model the action of aerosols on clouds

Voyaging for the Sentinels

Collaboration will study desert dust's impact on climate from space

TIME AND SPACE
Large-scale climatic warming could increase persistent haze in Beijing

Researchers turn plastic pollution into cleaners

Tonnes of garbage cleaned up from Galapagos coast

Tempers flare as missteps mar Paris push to go green









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.