Space Industry and Business News  
WATER WORLD
Scientists reveal key insights into emerging water purification technology
by Staff Writers
Fort Collins CO (SPX) Aug 08, 2019

file illustration only

With water scarcity a critical challenge across the globe, scientists and engineers are pursuing new ways to harvest purified water from unconventional sources, like seawater or even wastewater.

One of those researchers is Tiezheng Tong, an assistant professor in the Department of Civil and Environmental Engineering, whose lab is studying an emerging technology called membrane distillation.

Membrane distillation involves a thin, water-repellant membrane that exploits vapor pressure differences between hotter impure liquid, called "feedwater," and colder purified water, called "permeate." During the process, water vapor passes through the membrane and is separated from the salty or dirty feedwater. According to Tong, membrane distillation works better than other technologies like reverse osmosis, which can't treat extremely salty water such as desalination brines or produced water from hydraulic fracturing.

While it holds promise, membrane distillation doesn't work perfectly. A key challenge is designing membranes to purify water efficiently while ensuring zero contamination of the clean water.

Tong and materials scientist Arun Kota in the Department of Mechanical Engineering joined forces to get at the fundamental science behind designing that perfect membrane. In new experiments they describe in Nature Communications, the CSU researchers offer new information into why certain membrane designs used in membrane distillation work better than others.

"The fundamental knowledge from our paper improves mechanistic understanding on the water-vapor transport within microporous substrates and has the potential to guide the future design of membranes used in membrane distillation," Tong said.

In membrane distillation, the feedwater is heated, separating the pure and impure components by differences in volatility. The micro-porous membrane is a key component to the setup because it allows water vapor through, but not the entire impure liquid. Typically, the membrane is made of a "hydrophobic," or water-repellant, material in order to let only the water vapor pass through but maintain a barrier for the feedwater.

However, these hydrophobic membranes can fail, because the feedwater, such as shale oil-produced water, can have low surface tension. This low surface tension allows the feedwater to leak through the membrane pores, contaminating the pure water on the other side - a phenomenon called membrane wetting.

Previous research had unveiled that using "omniphobic" membranes - membranes that repel all liquids, including water and low surface tension liquids - keep the vapor/water separation intact. But, omniphobic membranes typically slow down the rate and amount of water vapor passing through the membrane, dramatically reducing the efficiency of the entire process.

The CSU researchers set out to discover why this tradeoff between hydrophobic vs. omniphobic membranes exists. Through systematic experiments in the lab led by postdoctoral researchers Wei Wang in Kota's lab, and Tong's graduate student Xuewei Du, they found that conventional hydrophobic membranes create a larger liquid-vapor interfacial area. This increases the amount of evaporation taking place. With the omniphobic membranes, they saw a much smaller liquid-vapor interface. This explains the difference between the membranes' performances.

The omniphobic membranes used in the experiments were made without depositing extra particles. Thus the researchers were able to determine that their observations weren't the result of structural changes to the membranes.

While they didn't offer a solution to the tradeoff, their insights reveal the core challenge around making membrane distillation a successful technology. "If you understand the problem thoroughly, then there is scope for solving it," Kota said. "We have identified the mechanism; now we have to solve the tradeoff problem."

For example, smart membranes with exceptional omniphobicity and simultaneously large liquid-vapor interfacial area can render membrane distillation a robust and cost-effective process for water purification. More collaborative research has been initiated by the team to design such smart membranes, with the goal of increasing efficiency of membrane distillation.

Tong added that the research happened at the interface of two disciplines: surface science and membrane technology.

"Arun and I utilized our complementary expertise to systematically conduct this work," Tong said. "It is an example of good interdisciplinary collaboration across campus."

Research paper


Related Links
Colorado State University
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


WATER WORLD
New wood membrane provides sustainable alternative for water filtration
Princeton NJ (SPX) Aug 05, 2019
Inspired by the intricate system of water circulating in a tree, a team of researchers led by Princeton University, have figured out how to use a thin slice of wood as a membrane through which water vapor can evaporate, leaving behind salt or other contaminants. Most membranes that are used to distill fresh water from salty are made of polymers, which are derived from fossil fuels and are also difficult to recycle. The wood membrane is a more sustainable material, and according to the researchers, ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Could Mexico cactus solve world's plastics problem?

Recovering color images from scattered light

GOES-17 Mishap Investigation Board Study Completed

Pentagon stalls $10 bn cloud contract eyed by Amazon

WATER WORLD
US Air Force awards contract for Enterprise Ground Services satellite operations

Russia launches Meridian military satellite from Plesetsk Cosmodrome

Army project may advance quantum materials, efficient communication networks

Newly established US Space Agency offers sneak peek at satellite layout

WATER WORLD
WATER WORLD
Evolution of space, 2SOPS prepares for GPS Block III

GPS signals no longer disrupted in Israeli airspace

An AI technology to reveal the characteristics of animal behavior only from the trajectory

European Galileo satellite navigation system resumes Initial Services

WATER WORLD
Cathay Pacific reports profit but warns of HK protests impact

Boeing nets $55.5M for work on KC-46 tanker's boom redesign

Raytheon delivers prototype mid-band jammer for use on EA-18G fighter

Pentagon: Cost of F-35 fighter plane program up by $25B

WATER WORLD
Quantum light sources pave the way for optical circuits

Researchers produce electricity by flowing water over extremely thin layers of metal

Extraordinarily thick organic light-emitting diodes solve nagging issues

Scientists send light through 2D crystal layer in quantum computing leap

WATER WORLD
NASA targets coastal ecosystems with new space sensor

CryoSat conquers ice on Arctic lakes

Roscosmos postpones launch of second Arctic weather satellite

Airbus selects exactEarth as AIS Partner for new maritime applications platform

WATER WORLD
'I like plastic': Pakistan's toxic 'love affair' with waste

Lebanese kick up stink over smell fix for garbage woes

Curbing air pollution won't speed up global warming

Asian countries turning back wealthy world's waste









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.