Space Industry and Business News  
TECH SPACE
Scientists prove feasibility of 'printing' replacement tissue
by Staff Writers
Winston-Salem NC (SPX) Feb 16, 2016


Tissue engineering is a science that aims to grow replacement tissues and organs in the laboratory to help solve the shortage of donated tissue available for transplants. The precision of 3D printing makes it a promising method for replicating the body's complex tissues and organs. However, current printers based on jetting, extrusion and laser-induced forward transfer cannot produce structures with sufficient size or strength to implant in the body.

Using a sophisticated, custom-designed 3D printer, regenerative medicine scientists at Wake Forest Baptist Medical Center have proved that it is feasible to print living tissue structures to replace injured or diseased tissue in patients.

Reporting in Nature Biotechnology, the scientists said they printed ear, bone and muscle structures. When implanted in animals, the structures matured into functional tissue and developed a system of blood vessels. Most importantly, these early results indicate that the structures have the right size, strength and function for use in humans.

"This novel tissue and organ printer is an important advance in our quest to make replacement tissue for patients," said Anthony Atala, M.D., director of the Wake Forest Institute for Regenerative Medicine (WFIRM) and senior author on the study. "It can fabricate stable, human-scale tissue of any shape. With further development, this technology could potentially be used to print living tissue and organ structures for surgical implantation."

With funding from the Armed Forces Institute of Regenerative Medicine, a federally funded effort to apply regenerative medicine to battlefield injuries, Atala's team aims to implant bioprinted muscle, cartilage and bone in patients in the future.

Tissue engineering is a science that aims to grow replacement tissues and organs in the laboratory to help solve the shortage of donated tissue available for transplants. The precision of 3D printing makes it a promising method for replicating the body's complex tissues and organs. However, current printers based on jetting, extrusion and laser-induced forward transfer cannot produce structures with sufficient size or strength to implant in the body.

The Integrated Tissue and Organ Printing System (ITOP), developed over a 10-year period by scientists at the Institute for Regenerative Medicine, overcomes these challenges. The system deposits both bio-degradable, plastic-like materials to form the tissue "shape" and water-based gels that contain the cells. In addition, a strong, temporary outer structure is formed. The printing process does not harm the cells.

A major challenge of tissue engineering is ensuring that implanted structures live long enough to integrate with the body. The Wake Forest Baptist scientists addressed this in two ways. They optimized the water-based "ink" that holds the cells so that it promotes cell health and growth and they printed a lattice of micro-channels throughout the structures. These channels allow nutrients and oxygen from the body to diffuse into the structures and keep them live while they develop a system of blood vessels.

It has been previously shown that tissue structures without ready-made blood vessels must be smaller than 200 microns (0.007 inches) for cells to survive. In these studies, a baby-sized ear structure (1.5 inches) survived and showed signs of vascularization at one and two months after implantation.

"Our results indicate that the bio-ink combination we used, combined with the micro-channels, provides the right environment to keep the cells alive and to support cell and tissue growth," said Atala.

Another advantage of the ITOP system is its ability to use data from CT and MRI scans to "tailor-make" tissue for patients. For a patient missing an ear, for example, the system could print a matching structure.

Several proof-of-concept experiments demonstrated the capabilities of ITOP. To show that ITOP can generate complex 3D structures, printed, human-sized external ears were implanted under the skin of mice. Two months later, the shape of the implanted ear was well-maintained and cartilage tissue and blood vessels had formed.

To demonstrate the ITOP can generate organized soft tissue structures, printed muscle tissue was implanted in rats. After two weeks, tests confirmed that the muscle was robust enough to maintain its structural characteristics, become vascularized and induce nerve formation.

And, to show that construction of a human-sized bone structure, jaw bone fragments were printed using human stem cells. The fragments were the size and shape needed for facial reconstruction in humans. To study the maturation of bioprinted bone in the body, printed segments of skull bone were implanted in rats. After five months, the bioprinted structures had formed vascularized bone tissue.

Ongoing studies will measure longer-term outcomes.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Wake Forest Baptist Medical Center
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Russia to Debut 3D Printed Armata Tank
Moscow (Sputnik) Feb 07, 2016
Russian Defense has been widely using the method of creating physical objects in a digital 3D model, or if simply said, 3D printing. The development of solid objects made of polymer materials at the company 'Electromashina', which is a part of 'Uralvagonzavod' corporation, has been underway for some time now. In the summer of 2015, the industrial 3D-printer was introduced, which was design ... read more


TECH SPACE
Scientists from MIPT gain insights into 'forbidden' chemistry

Some 5,000 years ago, silver mining on the shores of the Aegean Sea

Flow phenomena on solid surfaces

Twisted X-rays unravel the complexity of helical structures

TECH SPACE
ViaSat tapped to provide tactical terminals for Apache helicopters

Harris wins place on military communications contract

General Dynamics MUOS-Manpack radio supports government testing of MUOS network

Raytheon to produce, test Navy Multiband Terminals

TECH SPACE
Arianespace to launch two ViaSat high capacity satellites

SpaceX Conducts Hover Tests

Space Launch System's first flight will launch small Sci-Tech cubesats

Initial launcher assembly clears Ariane 5 for its payload integration process

TECH SPACE
Russia Developing Glonass Satellite And Latest Bird Launched

China to launch nearly 40 Beidou navigation satellites in five years

45th SW supports Air Force GPS IIF-12 launch aboard an Atlas V

United Launch Alliance launches GPS IIF-12 satellite for U.S. Air Force

TECH SPACE
StandardAero services engines on U.S. Special Forces planes

Climate change will slow transatlantic flights: study

F-35 deficiencies raise Pentagon concerns

Civil aviation takes first step towards capping carbon emissions

TECH SPACE
New thin film transistor may lead to flexible devices

Electron's 1-D metallic surface state observed

Organic crystals allow creating flexible electronic devices

Researchers develop hack-proof RFID chips

TECH SPACE
Consistency of Earth's magnetic field history surprises scientists

Sentinel-3A fully tanked

Mission teams prepare for critical days

China releases images captured by HD earth observation satellite

TECH SPACE
India's smog-choked capital to resume car ban in April

Living with contamination: fear and anger in Flint

Romania asks UNESCO to protect planned open-cast goldmine site

Lithium battery catalyst found to harm key soil microorganism









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.