Space Industry and Business News  
SPACE MEDICINE
Scientists mimic neural tissue in Army-funded research
by Staff Writers
Research Triangle Park NC (SPX) Mar 18, 2018

New breakthrough material could lead to future autonomous soft robotics, dual sensors and actuators for soft exoskeletons, or artificial skins.

U.S. Army-funded researchers at Brandeis University have discovered a process for engineering next-generation soft materials with embedded chemical networks that mimic the behavior of neural tissue. The breakthrough material may lead to autonomous soft robotics, dual sensors and actuators for soft exoskeletons, or artificial skins.

The research lays the foundations for futuristic soft active matter with highly distributed and tightly integrated sensing, actuation, computation and control, said Dr. Samuel Stanton, manager of the Complex and Dynamics Systems Program within the Engineering Sciences Directorate at the Army Research Office, an element of the U.S. Army Research Laboratory, located at Research Triangle Park in Durham, North Carolina.

ARO funds research to initiate scientific and far-reaching technological discoveries in extramural organizations, educational institutions, nonprofit organizations and private industry that may make future American Soldiers stronger and safer.

The research team, led by Professor of Physics Dr. Seth Fraden of Brandeis University, drew inspiration from the mesmerizing sinuous motion of a swimming blue eel and puzzlingly large gap between how natural systems move and the lack of such coordinated and smooth movement in artificial systems.

Our research interests lie squarely in the intersection of physics, chemistry, biology and materials science," Fraden said. "Our lab is interdisciplinary, but we are also involved in several multi-investigator projects."

Fraden's work sought to answer key questions, such as why is there such a void between the animate and inanimate that we never confuse the two, and if engineers could create materials with similar attributes to living organisms, but constructed from inanimate objects, can we do so using only chemicals and eschew use of motors and electronics?

Looking deeper, Fraden studied how a type of neural network present in the eel, named the Central Pattern Generator, produces waves of chemical pulses that propagate down the eel's spine to rhythmically drive swimming muscles.

Fraden's lab approached the challenge of engineering a material mimicking the generator by first constructing a control device that produces the same neural activation patterns biologists have observed. There, they created a control system that runs on chemical power, as is done in biology, without resorting to any computer or electromechanical devices, which are the hallmarks of manmade, hard robotic technology.

A breakthrough was made when Fraden and his team realized that the same CPG dynamics could be captured on a non-biological platform if they used a well-known oscillating chemical process known as the Belousov-Zhabotinsky reaction. The lab developed state-of-the-art fabrication techniques for soft materials engineering artificial chemical networks at the nanoscale that, altogether, would be capable of producing a wide variety of patterns. Their resulting robust chemical networks produced distributed dynamic patterns identical to the eel's Central Pattern Generator.

Fraden noted that "the engineering principles they identified are general and can be applied to design a whole range of other Central Pattern Generators, such as those responsible for other autonomous functions, such as the gait of a horse, for example, walk, canter, trot and gallop."

The research appear as the cover article of the March 7 issue of a U.K. journal, Lab on a Chip, which is a peer-reviewed scientific journal publishing primary research and review articles on any aspect of miniaturization at the micro and nano scale. The work earned distinction as one of the journal's "hot articles" due to its particularly high scores earned in the scientific review process.

"Enabling a breakthrough in robotic augmentation of high-tempo military maneuver and operations requires disrupting the notion of an intelligent system as a rigid multi-body platform optimized for slow, carefully planned movement in uncluttered terrain," Stanton said. "Fundamental research is needed to transpose smart materials from the current paradigm of fixed properties and mechanics with extrinsic and centralized control to a new paradigm of soft active composites with unprecedented dynamic functionality realized through maximal substrate embedding of tightly integrated, decentralized, and highly distributed intrinsic (materials-based) sensing, actuation, and control."

As a next step, Fraden's lab will take on the challenge of transferring the information coded in the dynamic patterns from the chemical networks to create a targeted mechanical response within a novel chemo-mechanical gel. This could transition the research from artificial material mimicking neural tissue to artificial tissue now mimicking neuromuscular tissue.


Related Links
U.S. Army Research Laboratory
Space Medicine Technology and Systems


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SPACE MEDICINE
Researchers uncover way to restore movement sensation in upper limb amputation patients
Cleveland OH (SPX) Mar 15, 2018
A team of researchers led by Cleveland Clinic has published first-of-its-kind findings in Science Translational Medicine on a new method of restoring natural movement sensation in patients with prosthetic arms. Led by Paul Marasco, Ph.D., the research team has successfully engineered a sense of complex hand movement in patients with upper limb amputations. This breakthrough may enhance the ability to control their prostheses, independently manage activities of daily living and improve quality of l ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
BridgeSat and NASA Sign Space Act Agreement for Laser Communications

NASA, ATLAS to Mature Portable Space Communications Technology

InDyne to support Solid State Phased Array Radar System

Helium ions open whole new world of materials

SPACE MEDICINE
Airbus to provide near real-time access to its satellite data

Increasing Situational Awareness with Fortion TacticalC2

British astronaut hails 'groundbreaking' Airbus satellite

Northrop Grumman gets production, support contracts for E-2D Hawkeye

SPACE MEDICINE
SPACE MEDICINE
Indra Expands With Four New Stations The Ground Segment Managing Galileo Satellites

GMV leads a project for application of EGNOS to maritime safety

Why Russia is one step ahead of US Army's plans for future GPS

Europe claims 100 million users for Galileo satnav system

SPACE MEDICINE
The view from inside supersonic combustion

Senegal helicopter crash toll rises to 8

Leonardo to build 28 helicopters for Qatari military

Lockheed awarded $1.5B contract for work on F-35 air systems

SPACE MEDICINE
Researchers find 'critical' security flaws in AMD chips

Precision atom qubits achieve major quantum computing milestone

New speed record for trapped-ion 'building blocks' of quantum computers

Largest molecular spin found close to a quantum phase transition

SPACE MEDICINE
Full house for EDRS

Scientists accurately model the action of aerosols on clouds

Voyaging for the Sentinels

Collaboration will study desert dust's impact on climate from space

SPACE MEDICINE
Large-scale climatic warming could increase persistent haze in Beijing

Tempers flare as missteps mar Paris push to go green

Researchers turn plastic pollution into cleaners

Mat of woven proteins can soak up pollution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.