Space Industry and Business News  
NANO TECH
Scientists identify unusual force acting on nanoparticles
by Brooks Hays
Washington (UPI) Apr 10, 2017


Different sets of rules govern matter at different scales. As nanotechnologies becomes smaller, scientists are paying closer attention to the physical laws of infinitesimal scales.

Recently, physicists were able to measure the Casimir Effect, an unusual force acting on the smallest of particles. The force is created by interactions between the electromagnetic waves of particles in a vacuum.

Classical physics fails to account for the unique force. Instead, researchers relied on quantum field theory to interpret their observations.

"These studies are important because we are developing nanotechnologies where we're getting into distances and sizes that are so small that these types of forces can dominate everything else," Alejandro Manjavacas, a physics professor at the University of New Mexico, said in a news release. "We know these Casimir forces exist, so, what we're trying to do is figure out the overall impact they have on very small particles."

Through their research, Manjavacas and an international team of researchers were able to describe the Casimir Effect using an analogy between classical physics and quantum field theory.

The sea of photons inside the vacuum affect a spinning nanoparticle much the way friction affects a ball hitting another surface. The photons both slow the particle's spin and enact a later force on it -- only there is no actual contact between the photons and the nanoparticle.

"The nanoparticle experiences a lateral force as if it were in contact with the surface, even though is actually separated from it," said Manjavacas. "It's a strange reaction but one that may prove to have significant impact for engineers."

Experiments showed changes in the distance between a particle and the surface alter the strength and direction of the Casimir Effect. The new observations, detailed in the journal Physical Review Letters, could help scientists improve nanotechnologies for industries like healthcare and electronics.

NANO TECH
How nanoparticles affect flow through porous stuff in surprising ways
Washington DC (SPX) Apr 06, 2017
Those who have mixed oil and vinegar may have unknowingly observed a strange fluid phenomenon called fingering instability. A type of this phenomenon, called viscous fingering (VF), occurs in porous media where fluids of differing viscosity converge in finger-shaped patterns as a result of growing disturbances at the interface. Such instabilities are encountered in a wide variety of fields ... read more

Related Links
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Despite EU fines, Greece struggling to promote recycling

New method for 3-D printing extraterrestrial materials

Ultra-thin multilayer film for next-generation data storage and processing

USC Viterbi researchers develop new class of optoelectronic materials

NANO TECH
US Strategic Command, Norway sign agreement to share space services, data

Pentagon urges Russia not to hang up military hotline

AF announces major changes to space enterprise

U.K. picks General Dynamics for battlefield communications project

NANO TECH
NANO TECH
Galileo's search and rescue service in the spotlight

Russia inaugurates GPS-type satellite station in Nicaragua

Northrop Grumman, Honeywell receive EGI-M contracts

China's BeiDou system to expand cooperation to SE Asia

NANO TECH
Airbus talks with military plane clients 'constructive': Enders

Lockheed Martin gets $372 million contract mod for F-35 work

U.S. Air Force to extend service life for F-16 fleet

Navy continues grounding of T-45 trainer aircraft

NANO TECH
Touch-sensitive, elastic fibers offer new interface for electronics

Microprocessors based on a layer of just 3 atoms

Streamlining mass production of printable electronics

Irish researchers make major breakthrough in smart printed electronics

NANO TECH
Scientists link California droughts and floods to distinctive atmospheric waves

Satellites map carbon sequestered by forests, with accuracy of up to 10 meters

As CO2 levels increase, airplane rides get bumpier

Spaceflight Industries Reveals BlackSky Spectra

NANO TECH
Polluted London sets its sights on cars

Road salt runoff threatens US, Canada lakes: study

Shanghai river clean-up leaves boat-dwellers in limbo

Bangladesh closes one of world's most polluted places









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.