Space Industry and Business News  
TIME AND SPACE
Scientists find black holes could reach 'stupendously large' sizes
by Staff Writers
London, UK (SPX) Jan 22, 2021

illustration only

The research, led by Queen Mary Emeritus Professor Bernard Carr in the School of Physics and Astronomy, together with F. Kuhnel (Munich) and L. Visinelli (Frascati), investigated how these SLABs could form and potential limits to their size.

Whilst there is evidence of the existence of supermassive black holes (SMBHs) in galactic nuclei - with masses from a million to ten billion times that of the Sun - previous studies have suggested an upper limit to their size due to our current view on how such black holes form and grow.

The existence of SLABS even larger than this could provide researchers with a powerful tool for cosmological tests and improve our understanding of the early Universe.

Challenging existing ideas
It has widely been thought that SMBHs form within a host galaxy and grow to their large sizes by swallowing stars and gas from their surroundings or merging with other black holes. In this case, there is an upper limit, somewhat above ten billion solar masses, on their mass.

In this study, the researchers propose another possibility for how SMBHs could form, which might evade this limit. They suggest that such SLABs could be 'primordial', forming in the early Universe, and well before galaxies.

As 'primordial' black holes don't form from a collapsing star, they could have a wide range of masses, including very small and stupendously large ones.

Professor Bernard Carr said: "We already know that black holes exist over a vast range of masses, with a SMBH of four million solar masses residing at the centre of our own galaxy. Whilst there isn't currently evidence for the existence of SLABs, it's conceivable that they could exist and they might also reside outside galaxies in intergalactic space, with interesting observational consequences. However, surprisingly, the idea of SLABs has largely been neglected until now."

"We've proposed options for how these SLABs might form, and hope that our work will begin to motivate discussions amongst the community."

Understanding dark matter
Dark matter is thought to make up around 80 per cent of the ordinary mass of the Universe. Whilst we can't see it, researchers think dark matter exists because of its gravitational effects on visible matter, such as stars and galaxies. However, we still don't know what the dark matter is.

Primordial black holes are one of the potential candidates. The idea of their existence can be traced back to the 1970s when Professor Carr and Professor Stephen Hawking suggested that in the first moments of the Universe fluctuations in its density could have resulted in some regions collapsing into black holes.

"SLABs themselves could not provide the dark matter," said Professor Carr, "but if they exist at all, it would have important implications for the early Universe and would make it plausible that lighter primordial black holes might do so."

Research paper


Related Links
Queen Mary University of London
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Could we harness energy from black holes
New York NY (SPX) Jan 15, 2021
A remarkable prediction of Einstein's theory of general relativity - the theory that connects space, time, and gravity - is that rotating black holes have enormous amounts of energy available to be tapped. For the last 50 years, scientists have tried to come up with methods to unleash this power. Nobel physicist Roger Penrose theorized that a particle disintegration could draw energy from a black hole; Stephen Hawking proposed that black holes could release energy through quantum mechanical emissi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Keep this surface dirty

Astroscale's ELSA-d debris buster ready for a March launch

DARPA opens door to producing "unimaginable" designs for DoD

Kaman KD-5600 Family of Digital Differential Measuring Systems Ideal for Wide Range of Applications, Industries

TIME AND SPACE
Skynet 6A passes Preliminary Design Review

Northrop Grumman lands $325M deal for Air Force JSTARS sustainment

ThinKom completes Over-the-Air tests with K/Q-Band antenna on protected comms satellite

Defense, Commerce departments join to find 5G solutions

TIME AND SPACE
TIME AND SPACE
China releases 4 new BDS technical standards

NASA advancing global navigation satellite system capabilities

China sees booming satellite navigation, positioning industry

Galileo satellites help rescue Vendee Globe yachtsman

TIME AND SPACE
Hybrid-electric plane may reduce aviation's air pollution problem

B-21 Raider stealth bomber to fly in 2022, Air Force says

Barrett praises senior Air Force leaders; assesses her tenure as secretary

AFRL, AFLCMC Laboratory collaboration addresses pilot oxygen concerns

TIME AND SPACE
Transforming quantum computing's promise into practice

ASML earnings up despite pandemic

The changing paradigm of next-generation semiconductor memory development

Light-based processors boost machine-learning processing

TIME AND SPACE
Satellite-powered app to spot loneliness in hotspots in UK cities

Earth Observation data could represent a billion-dollar opportunity for Africa

Genesis of blue lightning into the stratosphere detected from ISS

Counting elephants from space

TIME AND SPACE
A sea of rubbish: ocean floor landfills

Reducing air pollution 'could prevent 50,000 EU deaths'

Eliminating microplastics in wastewater directly at the source

Mobility without particulates









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.