Space Industry and Business News  
TECH SPACE
Scientists explore method to produce composites with 'shape memory'
by Staff Writers
Moscow, Russia (SPX) Sep 15, 2021

Shape memory testing of cured resin and pultruded composite specimens: (a) Deformed specimen of cured resin in the test fixture after heating; (b) cured resin specimens after shape fixing; (c) cured resin specimens after shape recovery; (d) deformed specimen of pultruded composite in the test fixture after heating; (e) geometry of pultruded composite specimen after shape fixing as compared to geometry of the test fixture; and (f) pultruded composite specimen after shape recovery.

Skoltech researchers have investigated a promising type of composite materials in terms of their shape memory behavior: how they resume their original shape following deformation if exposed to the right temperature or other conditions. The materials studied were glass fiber-reinforced epoxy-based flat laminates, produced with a technique called pultrusion.

While it has considerable potential for manufacturing composites with shape memory for electronics, biomedicine, and more, the method's application to such materials is examined for the first time in the Skoltech-led study reported in Composites Part A: Applied Science and Manufacturing.

Shape memory polymers, or SMPs, are materials that can recover their initial shape under external stimuli such as temperature, light, moisture, acidity, electricity, or electromagnetic field. They are widely used in the aerospace, biomedical, and automotive industries, as well as in 4D printing, temperature sensors, and electronic devices.

SMPs are often reinforced with carbon, basalt, or glass fibers, resulting in composite materials with superior properties. A number of techniques are used for SMP composite manufacturing, most of them fairly well-studied. Surprisingly, until now there have been no studies on the shape memory effect in composites produced by pultrusion - the most efficient composite manufacturing process available. I

t is a fast, versatile, and low-waste technology that could potentially yield new types of shape memory structural components with unique combinations of geometries and mechanical properties, impossible to produce with other methods.

"In this study, we investigated the shape memory behavior and mechanical characteristics of epoxy-based pultruded flat laminates reinforced with unidirectional glass fibers. The analysis also encompassed the resin cure kinetics and the thermomechanical and thermophysical properties of the cured resin," commented the project's PI, Alexander Safonov of the Skoltech Center for Design, Manufacturing and Materials.

"Our findings may be used for further numerical simulations and the optimization of the pultrusion process. Besides, the results demonstrate that pultruded SMPCs show significant promise for structural applications," the researcher added.

Research Report: "Shape memory behavior of unidirectional pultruded laminate"


Related Links
Skolkovo Institute of Science and Technology (Skoltech)
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
DARPA announces research teams to advance fundamental science of atomic vapors
Washington DC (SPX) Sep 07, 2021
DARPA has announced its selection of eight industry and university research teams to support the Science of Atomic Vapors for New Technologies (SAVaNT) program that kicked off this week. The teams will develop innovative approaches to push the performance limits of atomic vapors at room temperature and exploit their unique advantages to demonstrate new capabilities for DoD. An additional performer has been selected and is expected to be on contract in the coming months. Quantum research in b ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Now we're cooking with lasers

Scientists explore method to produce composites with 'shape memory'

TPY-4 Radar earns official US Government Designation

Global computing's carbon footprint is bigger than previously estimated

TECH SPACE
SpiderOak wins second Air Force contract for secure space communications

Next generation electronic warfare and radar interoperability demonstrated at Northern Lightning

Northrop Grumman demonstrates connectivity for long range command and control

Northrop Grumman demonstrates open architecture high-speed connectivity

TECH SPACE
TECH SPACE
Space Systems Command declares three GPS III space vehicles "Available for Launch"

Virginia company licenses NASA relative navigation technology

2nd SOPS accepts new GPS satellite

GMV develops a new maritime Galileo receiver

TECH SPACE
NASA innovations will help US meet sustainable aviation goals

Air Force security forces test new weapons qualification course

U.S. B-2 Spirit bombers, Norwegian F-35s integrate over North Sea

Biden administration targets 20% drop in aviation emissions

TECH SPACE
Ultra-efficient tech to power devices of tomorrow and forge sustainable energy future

Spintronics: Physicists develop miniature terahertz sources

Researchers use gold film to enhance quantum sensing with qubits in a 2D material

Chinese chip giant to invest $9 bn in new plant as US ban bites

TECH SPACE
Allen Coral Atlas completes map of the world's coral reefs using satellite imagery

Meteosat Gen 3 takes major step towards its first launch

Gaofen 5-02 satellite launched from Taiyuan

BlackSky secures investment from Palantir

TECH SPACE
Bitcoin mining generates substantial electronic waste: study

Indonesia court finds president negligent over pollution in landmark case

Microplastics from recyclable plastics on the rise

Sunlight can break down marine plastic into tens of thousands of chemical compounds, study finds









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.