Space Industry and Business News
EXO WORLDS
Scientists discover new way to identify liquid water on exoplanets
An example of carbon detection in exoplanets by the Webb Telescope in separate but related research.
Scientists discover new way to identify liquid water on exoplanets
by Staff Writers
Birmingham UK (SPX) Jan 01, 2024

Scientists have devised a new way to identify habitable planets and potentially inhabited planets, by comparing the amount of carbon dioxide in their atmosphere, to neighbouring planets.

An international team of researchers from the University of Birmingham (UK), the Massachusetts Institute of Technology (MIT) (US) and elsewhere, have shown that if a planet has a reduced amount of CO2 in its atmosphere compared to neighbouring planets, it suggests there is liquid water on that planet's surface. The drop in CO2 levels implies that the carbon dioxide in the atmosphere of the planet is being dissolved into an ocean or sequestrated by a planetary-scale biomass.

Habitability is a theoretical astronomical concept that means that a celestial body is capable of hosting and retaining liquid water on its surface. Planets too close to their star are too hot (such as Venus), those too far, are too cold (like Mars), whereas planets in the 'habitable zone' are just right. The habitable zone is sometimes referred to as the Goldilocks zone.

Whilst there has been much effort in identifying planets in the theoretical habitable zones of their stars, until now there was no way of knowing whether they truly have liquid water. While the scientific community has made progress in defining biosignatures, chemical tracers of biological processes, until now there had been no practical method for detecting habitability, the planetary property indicating the presence of liquid water.

The researchers devised a new 'habitability signature' with which they can identify whether a planet does indeed have liquid water. Before this, the closest scientists had come to identifying liquid on a planetary surface was to use its glint, how star light reflects off water. However, this signature is far too weak for current observatories to detect whereas the new method can be applied with current facilities.

Amaury Triaud, Professor of Exoplanetology at the University of Birmingham, who co-led the study said: "It is fairly easy to measure the amount of carbon dioxide in a planet's atmosphere. This is because CO2 is a strong absorber in the infrared, the same property causing the current rise in global temperatures here on Earth. By comparing the amount of CO2 in different planets' atmospheres, we can use this new habitability signature to identify those planets with oceans, which make them more likely to be able to support life.

"For example, we know that initially, the Earth's atmosphere used to be mostly CO2, but then the carbon dissolved into the ocean and made the planet able to support life for the last four billion years or so."

As well as developing a new way to identify habitable planets, the research can be used to reveal more insights into environmental tipping points.

Amaury Triaud continues, "By examining the levels of CO2 in other planets' atmospheres we can empirically measure habitability and compare it to our theoretical expectations. This helps gather context for the climate crisis we face on Earth to find out at which point the levels of carbon make a planet uninhabitable. For example, Venus and Earth look incredibly similar, but there is a very high level of carbon in Venus' atmosphere. There may have been a past climatic tipping point that led to Venus becoming uninhabitable."

The new method is not just a signature for habitability, but it can serve as a biosignature too, since biology captures carbon dioxide as well.

Dr Julien de Wit, Assistant Professor of Planetary Sciences at MIT and co-leader of the study explains: "Life on Earth accounts for 20% of the total amount of captured CO2, with the rest mainly being absorbed by the oceans. On another planet, this number could be much larger. One of the tell-tale signs of carbon consumption by biology, is the emission of oxygen. Oxygen can transform into ozone, and it turns out ozone has a detectable signature right next to CO2. So, observing both carbon dioxide and ozone at once can inform us about habitability, but also about the presence of life on that planet."

An important element of the new study is that those signatures are detectable with current telescopes. Julien de Wit concludes "Despite much early hopes, most of our colleagues had eventually come to the conclusion that major telescopes like the JWST would not be able to detect life on exoplanets. Our work brings new hope. By leveraging the signature of carbon dioxide, not only can we infer the presence of liquid water on a faraway planet, but it also provides a path to identify life itself."

The next step for the research team is to detect the atmospheric carbon dioxide compositions of a range of exoplanets and identify which have oceans on their surface, and help prioritise further observations towards those that may support life.

Research Report:Atmospheric carbon depletion as a tracer of water oceans and biomass on temperate terrestrial exoplanets

Related Links
University of Birmingham
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EXO WORLDS
NEOWISE space telescope marks 10 Years on orbit as End of Mission looms
Pasadena CA (JPL) Dec 14, 2023
NASA's NEOWISE has had a busy decade. Since its reactivated mission began on Dec. 13, 2013, the space telescope has discovered a once-in-a-lifetime comet, observed more than 3,000 near-Earth objects, bolstered international planetary defense strategies, and supported another NASA mission's rendezvous with a distant asteroid. And that's just a partial list of accomplishments. But all good things must come to an end: Solar activity is causing NEOWISE - short for Near-Earth Object Wide-field Infrared ... read more

EXO WORLDS
Rocket Lab to launch Space Situational Awareness mission for Spire and NorthStar

Researchers 3D print components for a portable mass spectrometer

L-SAR 01 Satellite Group Begins Operations, Enhancing China's Disaster Response

GESTRA space radar successfully enters final test phase

EXO WORLDS
Rocket Lab secures $515M contract with Space Development Agency for Tranche 2 constellation

Viasat Secures Major U.S. Air Force Contract for Advanced Tech Integration

HawkEye 360's Pathfinder constellation complete five years of Advanced RF Detection

New antenna offers unprecedented flexibility for military applications

EXO WORLDS
EXO WORLDS
GMV reinforces satellite expertise with new Galileo Operations Center in Madrid

Airbus presents first flight model structure for Galileo Second Generation

Galileo Gen2 satellite production commences at Airbus facility

Galileo Second Generation satellite aces first hardware tests

EXO WORLDS
Taiwan detects four Chinese balloons ahead of election

Poland sends F-16 jets to border after Russian strikes on Ukraine

Aurora Flight Sciences to build DARPA's X-65 utilizing Active Flow Control

Taiwan slams aviation safety 'threat' from China balloons

EXO WORLDS
ASML chip machines blocked from export to China

US to gather chips supply chain intel to boost national security

Utility-Scale Quantum Program Advances Toward Prototyping

Chairman of Taiwan chip giant TSMC to retire next year

EXO WORLDS
NOAA Approves Sidus Space for Government and Commercial Earth Imaging

China Launches Land Surveyor Satellites, Bolstering Earth Observation Network

NASA, NOAA Launch NEON Program with SwRI-developed QuickSounder satellite

Earth Blox delivers climate and nature analytics at scale through Google Cloud Marketplace

EXO WORLDS
Amsterdam 'fashion library' takes aim at clothes waste

Researchers: Fragrant allure of live Christmas trees can affect indoor air quality

China air pollution worsens in 2023, first time in decade

Fresh Research for Fresh Air: Harnessing microbes for removing indoor pollutants

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.