Space Industry and Business News
MARSDAILY
Scientists discover molten layer covering Martian core
An artist's depiction of the liquid silicate layer wrapped around the Martian core.
Scientists discover molten layer covering Martian core
by Staff Writers
College Park MD (SPX) Oct 31, 2023

NASA's InSight mission to Mars helped scientists map out Mars' internal structure, including the size and composition of its core, and provided general hints about its tumultuous formation.

But findings from a new paper published in the journal Nature could lead to reanalysis of that data. An international team of researchers discovered the presence of a molten silicate layer overlying Mars' metallic core-providing new insights into how Mars formed, evolved and became the barren planet it is today.

Published on October 25, 2023, the team's paper details the use of seismic data to locate and identify a thin layer of molten silicates (rock-forming minerals that make up the crust and mantle of Mars and Earth) lying between the Martian mantle and core. With the discovery of this molten layer, the researchers determined that Mars' core is both denser and smaller than previous estimates, a conclusion that better aligns with other geophysical data and analysis of Martian meteorites.

Vedran Lekic, a professor of geology at the University of Maryland and co-author of the paper, compared the molten layer to a 'heating blanket' covering the Martian core.

"The blanket not only insulates the heat coming from the core and prevents the core from cooling, but also concentrates radioactive elements whose decay generates heat" Lekic said. "And when that happens, the core is likely to be unable to produce the convective motions that would create a magnetic field-which can explain why Mars currently doesn't have an active magnetic field around it."

Without a functional protective magnetic field around itself, a terrestrial planet such as Mars would be extremely vulnerable to harsh solar winds and lose all the water on its surface, making it incapable of sustaining life. Lekic added that this difference between Earth and Mars could be attributed to differences in internal structure and the different planetary evolution paths the two planets took.

"The thermal blanketing of Mars' metallic core by the liquid layer at the base of the mantle implies that external sources are necessary to generate the magnetic field recorded in the Martian crust during the first 500 to 800 million years of its evolution," said the paper's lead author Henri Samuel, a scientist with the French National Center for Scientific Research. "These sources could be energetic impacts or core motion generated by gravitational interactions with ancient satellites which have since then disappeared."

The team's conclusions support theories that Mars was at one time a molten ocean of magma that later crystallized to produce a layer of silicate melt enriched in iron and radioactive elements at the base of the Martian mantle. The heat emanating from the radioactive elements would then have dramatically altered the thermal evolution and cooling history of the red planet.

"These layers, if widespread, can have pretty big consequences for the rest of the planet," Lekic said. "Their existence can help tell us whether magnetic fields can be generated and maintained, how planets cool over time, and also how the dynamics of their interiors change over time."

NASA's InSight mission officially ended in December 2022 after more than four years of collecting data on Mars, but the analysis of the observations continues. Samuel, Lekic and their co-authors are among the latest researchers to reexamine prior models of Mars using seismology to confirm the planet's structure and turbulent history.

"This new discovery of a molten layer is just one example of how we continue to learn new things from the completed InSight mission," Lekic said. "We hope that the information we've gathered on planetary evolution using seismic data is paving the way for future missions to celestial bodies like the moon and other planets like Venus."

Research Report:Geophysical evidence for an enriched molten silicate layer above Mars' core

Related Links
University of Maryland
Mars News and Information at MarsDaily.com
Lunar Dreams and more

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
MARSDAILY
Mystery of the Martian core solved
Zurich, Switzerland (SPX) Oct 26, 2023
For four years, NASA's InSight lander recorded tremors on Mars with its seismometer. Researchers at ETH Zurich collected and analysed the data transmitted to Earth to determine the planet's internal structure. "Although the mission ended in December 2022, we've now discovered something very interesting," says Amir Khan, a Senior Scientist in the Department of Earth Sciences at ETH Zurich. An analysis of recorded marsquakes, combined with computer simulations, paint a new picture of the planet's in ... read more

MARSDAILY
NASA's InSPA Aims to Stimulate Commercial Manufacturing in Low Earth Orbit

MDA acquires SatixFy's Digital Payload Division in $60 Million deal

ESA hones 3D Printed electromagnetic coils for spaceflight

NRL ISS Mission seeks new bioinspired materials

MARSDAILY
Lockheed Martin Showcases Hybrid 5G-Tactical Network in Multi-Domain Field Test

SDA Awards Northrop Grumman $732 Million Satellite Contract

HawkEye 360 secures $12M contract from NIWC Pacific for Maritime Awareness

University of Kansas wins $5M NSF grant to help secure 5G for U.S. Military

MARSDAILY
MARSDAILY
Zephr raises $3.5M to bring next-gen GPS to major industries

Satnav test on remote island lab

Trimble and Kyivstar to provide GNSS correction services in Ukraine

Galileo becomes faster for every user

MARSDAILY
NASA completes key step in aviation safety research

French jets join NATO drills in Romania to bolster defence

Officials: Chinese fighter jet came dangerously close to colliding with U.S. B-52

France says talking to Saudi about Rafale fighter sale

MARSDAILY
TU Delft researchers discover new ultra strong material for microchip sensors

A superatomic semiconductor sets a speed record

Chip maker Intel beats earnings expectations as it pursues rivals

Taiwan's TSMC reports profit drop in third quarter

MARSDAILY
TelePIX and Thrusters Unlimited to sell Geo-Info solutions across Latin America and Caribbean

China places multipurpose satellite into space

Six trends to watch in commercial Earth observation

2023 Ozone Hole Ranks 16th Largest, NASA and NOAA Researchers Find

MARSDAILY
China's smog problem explained

Schools shut as toxic smog engulfs India's capital

'Air-pocalypse': Indian capital launches 'Green War Room'

North China smog to last until mid-November: state media

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.