Space Industry and Business News  
TECH SPACE
Scientists discover just how runny a liquid can be
by Staff Writers
London, UK (SPX) Apr 28, 2020

The image shows how fundamental constants of Nature set the fundamental lower limit for liquid viscosity.

Scientists from Queen Mary University of London and the Russian Academy of Sciences have found a limit to how runny a liquid can be.

Viscosity, the measure of how runny a fluid is, is a property that we experience daily when we fill a kettle, take a shower, pour cooking oil or move through air.

We know that liquids get thicker when cooled and runnier when heated, but how runny can a liquid ever get if we keep heating it?

Eventually, the liquid boils and becomes a gas or a dense gas-like substance if heated at high enough pressure. At the point where it transitions between the liquid-like and gas-like state is the minimum value of viscosity.

Viscosity is considered impossible to calculate from theory because it strongly depends on liquid structure, composition and interactions as well as external conditions in a complicated way. Nobel laureate Steven Weinberg compared the difficulty of calculating the viscosity of water to the problem of calculating fundamental physical constants, the constants which shape the fabric of our Universe.

Despite this difficulty, the researchers have developed an equation to do so.

In the study, published in Science Advances, they show that two fundamental physical constants govern how runny a liquid can be. Physical constants, or constants of Nature, are measurable properties of the physical universe that do not change.

Their equation relates the minimal value of elementary viscosity (the product of viscosity and volume per molecule) to the Planck constant, which governs the quantum world, and the dimensionless proton-to-electron mass ratio.

Professor Kostya Trachenko, lead author of the paper from Queen Mary University of London, said: "This result is startling. Viscosity is a complicated property varying strongly for different liquids and external conditions. Yet our results show that the minimal viscosity of all liquids turns out to be simple and universal."

There are practical implications of discovering this limit too. It could be applied where a new fluid for a chemical, industrial or biological process with a low viscosity is required. One example where this is important is the recent use of supercritical fluids for green and environmentally clean ways of treating and dissolving complex waste products.

In this instance, the discovered fundamental limit provides a useful theoretical guide of what to aim for. It also tells us that we should not waste resources trying to beat the fundamental limit because the constants of Nature will mould the viscosity at or above this point.

Fundamental physical constants and in particular dimensionless constants (fundamental constants that do not depend on the choice of physical units) are believed to define the Universe we live in. A finely-tuned balance between the proton-to-electron mass ratio and another dimensionless constant, the fine structure constant, governs nuclear reactions and nuclear synthesis in stars leading to essential biochemical elements including carbon.

This balance provides a narrow 'habitable zone' where stars and planets can form and life-supporting molecular structures can emerge. Change one of the dimensionless fundamental constants slightly, and the Universe becomes very different, with no stars, heavy elements, planets and life.

Professor Trachenko said: "The lower fundamental limit reminds us how fundamental constants of Nature affect us daily, starting from making a morning cup of tea by extending their overarching rule to specific, yet complex, properties such as liquid viscosity."

Vadim Brazhkin, co-lead author from the Russian Academy of Sciences, added: "There are indications that the fundamental lower limit of liquid viscosity may be related to very different areas of physics: black holes as well as the new state of matter, quark-gluon plasma, which appears at very high temperature and pressure. Exploring and appreciating these and other connections is what makes science ever so exciting."

Research Report: 'Minimal quantum viscosity from fundamental physical constants'


Related Links
Queen Mary University Of London
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Cool down fast to advance quantum nanotechnology
Vienna, Austria (SPX) Apr 22, 2020
The team, led by physicists at the Technische Universitat Kaiserslautern (TUK) in Germany and University of Vienna in Austria, generated the Bose-Einstein condensate (BEC) through a sudden change in temperature: first heating up quasi-particles slowly, then rapidly cooling them down back to room temperature. They demonstrated the method using quasi-particles called magnons, which represent the quanta of magnetic excitations of a solid body. "Many researchers study different types of Bose-Einstein ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Sensors woven into a shirt can monitor vital signs

Now metal surfaces can be instant bacteria killers

Cool down fast to advance quantum nanotechnology

Intelsat 901 Satellite Returns to Service Using Northrop Grumman's Mission Extension Vehicle

TECH SPACE
US Space Force pens $1B in contracts for unjammable modems

AEHF-6 Satellite Actively Communicating With U.S. Space Force

AEHF-6 satellite completes protected satellite constellation

Sixth Advanced Extremely High Frequency satellite ready for launch

TECH SPACE
TECH SPACE
Quantum entanglement offers unprecedented precision for GPS, imaging and beyond

India develops unique model to hit enemy targets without positioning error

Apple data show dramatic impact of virus on movement

USSF reschedules next GPS launch

TECH SPACE
Germany opts for US-European solution to replace fighter jet fleet

Air Force saves $7M on fuel for KC-135 by turning windshield wipers vertical

Germany eyes Airbus and Boeing fighter jets

Taiwan virus aid sparks calls to rename China Airlines

TECH SPACE
Reducing the carbon footprint of artificial intelligence

Quantum research unifies two ideas offering an alternative route to topological superconductivity

The future of semiconductors is clear

Organic memory devices show promise for flexible, wearable, personalized computing

TECH SPACE
SwRI awarded $12.8M to develop space weather instrument

COVID-19: Aeolus and weather forecasts

Study may explain the source of nitrogen in Earth's atmosphere

The combined power of remote earth observations aboard ISS

TECH SPACE
Water replaces toxic fluids in production of plastics

Airborne particle levels plummet in Northern India

Senegal bans most single-use plastics

Soot may only be half the problem when it comes to cookstoves









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.