Space Industry and Business News  
ENERGY TECH
Scientists discover a link between superconductivity and the periodic table
by Staff Writers
Moscow, Russia (SPX) Apr 11, 2018

A TOC graph

Scientists from Moscow Institute of Physics and Technology and Skoltech have demonstrated the high-temperature superconductivity of actinium hydrides and discovered a general principle for calculating the superconductivity of hydrides based on the periodic table alone. The results of their study were published in The Journal of Physical Chemistry Letters.

High-temperature superconductivity is a phenomenon of zero electrical resistance in certain materials at temperatures above -196C (the temperature of liquid nitrogen) that physicists, chemists and materials scientists worldwide have been intensely researching for decades, as room-temperature superconductors open up vast prospects for the power industry, transport, and other technology-driven sectors.

Currently, the record holder in high-temperature superconductivity is hydrogen sulfide (H3S), which functions as a superconductor at 1.5 million atmospheres and temperatures of down to -70C.

Such pressure levels can only be attained in a lab environment, not in real life, and the temperature is way below room temperature, so the search continues for new superconductors. Perhaps an even higher-temperature superconductivity can be attained in metal-hydrogen compounds. Yet the link between chemical composition and superconductivity was unclear, leaving scientists to puzzle out by trial and error.

A group of chemists led by Artem R. Oganov, Professor at Moscow Institute of Physics and Technology and Skoltech, discovered that certain elements capable of forming superconducting compounds are arranged in a specific pattern in the periodic table. It was established that high-temperature superconductivity develops in substances containing metal atoms that come close to populating a new electronic subshell.

Metal atoms inside the crystal are assumed to become highly sensitive to the positions of the neighboring atoms, which would result in strong electron-phonon interaction - the underlying effect of conventional superconductivity.

Based on this assumption, the scientists supposed that high-temperature superconductivity could occur in actinium hydrides. Their supposition was verified and confirmed: superconductivity was predicted for AcH16 at temperatures of -69-22 oC at 1.5 million atmospheres.

"The very idea of a connection between superconductivity and the periodic table was first put forward by Dmitry Semenok, a student at my lab. The principle he discovered is very simple and it is really amazing that no one had hit upon it before," says Artem Oganov.

Research paper


Related Links
Moscow Institute of Physics and Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
The mirror-like physics of the superconductor-insulator transition
Lemont, IL (SPX) Apr 10, 2018
The world on the other side of Alice in Wonderland's looking-glass is not what it seems, but the mirror-like physics of the superconductor-insulator transition operates exactly as expected. Scientists know this to be true following the observation of a remarkable phenomenon, the existence of which was predicted three decades ago but that had eluded experimental detection until now. The observation confirms that fundamental quantum states, superconductivity and superinsulation, both arise in mirror ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Latest Updates from NASA on IMAGE Recovery

Invisibility material created by UCI engineers

Scientists create 'Swiss army knife' for electron beams

Smart ink adds new dimensions to 3-D printing

ENERGY TECH
India Struggling to Establish Lost Link With Crucial Communication Satellite

Indian scientists lose contact with satellite

Russian Soyuz launches military satellite

India set to launch S-Band satellite for military communications

ENERGY TECH
ENERGY TECH
DT Research introduces new rugged tablet with scientific-grade GNSS

China sends twin BeiDou-3 navigation satellites into space

Indra Expands With Four New Stations The Ground Segment Managing Galileo Satellites

GMV leads a project for application of EGNOS to maritime safety

ENERGY TECH
Fierce clashes as French police try to clear anti-capitalist camp

257 dead as military plane crashes in Algeria's worst air disaster

Boeing to advance design process for new Air Force One

Two soldiers killed in Kentucky copter crash: army

ENERGY TECH
A new kind of quantum bits in two dimensions

Diamond-based circuits can take the heat for advanced applications

Mini toolkit for measurements: New NIST chip hints at quantum sensors of the future

Next-generation electronics one leap closer to reality

ENERGY TECH
New satellite method enables undersea estimates from space

New source of global nitrogen discovered: Earth's bedrock

Denmark Hopeful to 'Enter Superliga' With Recent Space Project

Draining peatlands gives global rise to laughing-gas emissions

ENERGY TECH
Agricultural fires can double Delhi pollution during peak burning season

Rivers worldwide threatened by pharma waste: studies

Philippine tourist island in chaos as shutdown looms

India's eco warriors who sent Bollywood's Khan to jail









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.