Space Industry and Business News  
SOLAR SCIENCE
Scientists develop detector for investigating the sun
by Staff Writers
Moscow, Russia (SPX) Oct 14, 2020

Device prototype: (1) the body of the detector consisting of scintillation disks, (2) fiber optics in a protective coating, (3) control boards for managing offset voltage and data acquisition -- developed at the Institute for Nuclear Research of the Russian Academy of Sciences, (4) prototype frame and stand for ground-based observations.

Researchers from MIPT have developed a prototype detector of solar particles. The device is capable of picking up protons at kinetic energies between 10 and 100 megaelectronvolts, and electrons at 1-10 MeV. This covers most of the high-energy particle flux coming from the sun. The new detector can improve radiation protection for astronauts and spaceships, as well as advancing our understanding of solar flares. The research findings are reported in the Journal of Instrumentation.

As energy gets converted from one form to another in the active regions of the solar atmosphere, streams of particles - or cosmic rays - are born with energies roughly between 0.01-1,000 MeV. Most of these particles are electrons and protons, but nuclei from helium to iron are also observed, albeit in far smaller numbers.

The current consensus is that the particle flux has two principal components. First, there are the narrow streams of electrons in brief flares lasting from tens of minutes to several hours. And then there are the flares with broad shockwaves, which last up to several days and mostly contain protons, with some occasional heavier nuclei.

Despite the vast arrays of data supplied by solar orbiters, some fundamental questions remain unresolved. Scientists do not yet understand the specific mechanisms behind particle acceleration in the shorter- and longer-duration solar flares.

It is also unclear what the role of magnetic reconnection is for particles as they accelerate and leave the solar corona, or how and where the initial particle populations originate before accelerating on impact waves. To answer these questions, researchers require particle detectors of a novel type, which would also underlie new spaceship security protocols that would recognize the initial wave of electrons as an early warning of the impending proton radiation hazard.

A recent study by a team of physicists from MIPT and elsewhere reports the creation of a prototype detector of high-energy particles. The device consists of multiple polystyrene disks, connected to photodetectors. As a particle passes through polystyrene, it loses some of its kinetic energy and emits light, which is registered by a silicon photodetector as a signal for subsequent computer analysis.

The project's principal investigator Alexander Nozik from the Nuclear Physics Methods Laboratory at MIPT said: "The concept of plastic scintillation detectors is not new, and such devices are ubiquitous in Earth-based experiments. What enabled the notable results we achieved is using a segmented detector along with our own mathematical reconstruction methods."

Part of the paper in the Journal of Instrumentation deals with optimizing the detector segment geometry. The dilemma is that while larger disks mean more particles analyzed at any given time, this comes at the cost of instrument weight, making its delivery into orbit more expensive. Disk resolution also drops as the diameter increases. As for the thickness, thinner disks determine proton and electron energies with more precision, yet a large number of thin disks also necessitates more photodetectors and bulkier electronics.

The team relied on computer modeling to optimize the parameters of the device, eventually assembling a prototype that is small enough to be delivered into space. The cylinder-shaped device has a diameter of 3 centimeters and is 8 centimeters tall. The detector consists of 20 separate polystyrene disks, enabling an acceptable accuracy of over 5%.

The sensor has two modes of operation: It registers single particles in a flux that does not exceed 100,000 particles per second, switching to an integrated mode under more intense radiation. The second mode makes use of a special technique for analyzing particle distribution data, which was developed by the authors of the study and does not require much computing power.

"Our device has performed really well in lab tests," said study co-author Egor Stadnichuk of the MIPT Nuclear Physics Methods Laboratory.

"The next step is developing new electronics that would be suitable for detector operation in space. We are also going to adapt the detector's configuration to the constraints imposed by the spaceship. That means making the device smaller and lighter, and incorporating lateral shielding. There are also plans to introduce a finer segmentation of the detector. This would enable precise measurements of electron spectra at about 1 MeV."

Research paper


Related Links
Moscow Institute Of Physics And Technology
Solar Science News at SpaceDaily


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR SCIENCE
New look at sunspots is helping understand major flares and life around other stars
Greenbelt MD (SPX) Oct 09, 2020
NASA's extensive fleet of spacecraft allows scientists to study the Sun extremely close-up - one of the agency's spacecraft is even on its way to fly through the Sun's outer atmosphere. But sometimes taking a step back can provide new insight. In a new study, scientists looked at sunspots - darkened patches on the Sun caused by its magnetic field - at low resolution as if they were trillions of miles away. What resulted was a simulated view of distant stars, which can help us understand stellar ac ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
Kongsberg awarded contract for mobile communication satellite

On the trail of causes of radiation events during space flight

Ultrasensitive microwave detector developed

NASA, space industry seek new ways to cope with space debris

SOLAR SCIENCE
WGS-11+ Satellite Completes Preliminary Design Review

Defense Dept. awards $600M in contracts for 5G testing at five bases

Isotropic Systems and SES GS to trail next-gen multi-beam antenna technologies for US forces

Swedish Space Corporation to cease assisting Chinese companies operate satellites

SOLAR SCIENCE
SOLAR SCIENCE
China's self-developed BDS sees thriving applications

GPS-enabled decoy eggs may help track, catch sea turtle egg traffickers

Fourth GPS 3 Satellite Encapsulated Ahead of Launch

Government to explore new ways of delivering 'sat nav' for the UK

SOLAR SCIENCE
U.S. Marines' F-35Bs practice bombing runs from British carrier near Scotland

USAF airmen in Materiel, Global Strike commands to collaborate

Finland approved to buy 64 F-35s in $12.5B deal

KLM virus bailout to go to court in November: Greenpeace

SOLAR SCIENCE
Liquid metals come to the rescue of semiconductors

New algorithm could unleash the power of quantum computers

China chip giant SMIC shares sink on US export controls

Scientists pave way for carbon-based computers

SOLAR SCIENCE
Monitoring trucks and trade from space

Satellogic announces global consortium of geospatial imagery

Two US satellites fail to enter orbit due to abnormal situation: Reports

Compact, low-cost system provides fast 3D hyperspectral imaging

SOLAR SCIENCE
Russian sea pollution forms massive moving slick

Kamchatka marine life death caused by algae: Russian scientist

Stay-at-home orders cut noise exposure almost in half

Electric clothes dryers: An underestimated source of microfiber pollution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.