Space Industry and Business News
SOLAR DAILY
Scientists create novel bandgap-tunable 2D nanosheets made from perovskite oxynitrides
illustration only
Scientists create novel bandgap-tunable 2D nanosheets made from perovskite oxynitrides
by Staff Writers
Kumamoto, Japan (SPX) Mar 21, 2023

Two-dimensional monolayer nanosheets made from layered perovskite have many desirable properties. However, it has been difficult to create them with tunable bandgaps in the visible region without adding oxygen defects. Recently, researchers from Japan were able to successfully develop chemically stable nanosheets from perovskite oxynitrides which had controllable bandgaps. These nanosheets have immense potential for future use in photocatalysis, electrocatalysts, and other sustainable technologies.

Nanosheets, which include the well-known material graphene, are materials that possess nanoscale homogenous thicknesses, flat surfaces, and high crystallinity. Nanosheets have wide applications in photocatalysis, photoluminescence, and electronics. Recently, perovskites, which have semiconductor properties, have received attention in the scientific community as a promising material for producing two-dimensional (2D) monolayer nanosheets.

However, these nanosheets would need have a bandgap corresponding to the energy of visible light to be useful, as this would determine when the semiconductor conducts electricity. The tunability of the bandgap has remained a major challenge for researchers, as creating 2D nanosheets from perovskite with a tunable bandgap is difficult.

To solve this problem, a team of researchers from Kumamoto University, including Professor Shintaro Ida from the Institute of Industrial Nanomaterials, decided to focus on a group of perovskite materials known as Ruddlesden-Popper (RP) phase layered perovskite oxynitrides. In their paper published in the journal Small, the researchers were able to successfully create 2D perovskite oxynitride nanosheets with a tunable bandgap using their novel process.

"Metal oxynitride semiconductor nanosheets containing oxygen, nitrogen, and a metal have not been researched much. Thin films made of these materials demonstrate functions superior to those of oxides. Thus, their synthesis will have a huge impact in this field. We synthesized nanosheets from RP-phase perovskite oxynitrides whose properties, such as its bandgap, are freely tunable," explains Prof. Ida, who is the corresponding author of the study.

The researchers first used pristine Dion-Jacobson phase lanthanum niobium oxide (KLaNb2O7) as a precursor material. They then proceeded to add nitrogen to this via a process called nitridation. The researchers added nitrogen at different temperatures ranging from 750C to 800C to the material. This led to the creation of the RP-phase oxynitride derivative. Following this, they were able to use a two-step intercalation process to exfoliate out lanthanum niobium oxynitride nanosheets with the formula LaNb2O7-xNx ('x' being the amount of nitrogen added to the perovskite).

On testing these nanosheets, the researchers saw that the material had a homogenous thickness of 1.6 nm and exhibited different colors, ranging from white to yellow, depending on the nitridation temperature. The nanosheets also exhibited the desirable semiconductor property of having a tunable bandgap in the visible region, ranging from 2.03-2.63 eV, based on the nitridation temperature.

The team then prepared a "superlattice" structure consisting of alternating layers of the synthesized nanosheets and oxide (Ca2Nb3O10) nanosheets. On testing the properties of this superlattice, they found that it exhibited superior proton conductivity and excellent photocatalytic activity.

"The results of this study will open new possibilities for producing multiple superlattices by employing soft-chemical nano-architectonics based on 2D nanosheets," speculates an enthusiastic Prof. Ida. "This will get us one step closer to a sustainable society, as these nanosheets would enable efficient splitting of water as a photocatalyst and also in creating more complex and better performing electronics."

Research Report:Bandgap Tunable Oxynitride LaNb2O7-xNx Nanosheets

Related Links
Kumamoto University
All About Solar Energy at SolarDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SOLAR DAILY
Porous insulator contact breaks passivation-transport trade-off
Hefei, China (SPX) Mar 21, 2023
A research team led by Prof. XU Jixian from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) designed and fashioned a novel porous insulator contact (PIC) for perovskite solar cells. The PIC ameliorated the non-radiative charge recombination effect and the corresponding solar cell achieved an efficiency of up to 25.5%. The result was published in Science. Conventional strategies reducing charge recombination at photocurrent transport interface are d ... read more

SOLAR DAILY
Exploring the nanoworld of biogenic gems

MIT 3D-printed revolving devices can sense how they are moving

Venezuela, China, Biden and extraterrestrials: the disinformation of AI

Keysight introduces 2 GHz real-time spectrum analysis solution for satellite operators

SOLAR DAILY
Silvus Technologies unveils Spectrum Dominance

Rensselaer researcher breaks through the clouds to advance satellite communication

Space Systems Command demonstrates satellite anti-jam capability

SpaceX launches 40 more Internet satellites for competitor

SOLAR DAILY
SOLAR DAILY
GMV will develop the future Galileo Second Generation capabilities

Telit Cinterion adds Dual-Band GNSS Positioning to AIROHA AG3335 Chipsets

Monogoto teams with Skylo and SODAQ to deliver NB-IoT satellite asset tracking

Quectel announces CC200A-LB satellite module for IoT

SOLAR DAILY
Ex-US Marine accused of helping China was lured to Australia: lawyer

Slovakia to donate 13 MiG-29 fighter jets to Ukraine

Poland and Slovakia to transfer MiG-29 planes to Ukraine; W.House still opposes move

US calls on Russia to operate military aircraft safely

SOLAR DAILY
Researchers create breakthrough spintronics manufacturing process that could revolutionize the electronics industry

Cleveland Clinic and IBM unveil first quantum computer dedicated to healthcare research

Beyond Gravity's Lynx computer takes data processing to new level

Brain cells inspire new computer components

SOLAR DAILY
Leading ozone scientist says more climate surprises likely

How heat flow affects the Earth's magnetic field

Intelsat to operate air pollution monitoring space instrument

Record early start again for Tokyo's cherry blossoms

SOLAR DAILY
Unwanted visitor ruins spring break in Florida - toxic algae

Report: Only six countries met 'healthy' air quality standards in 2022

Ohio sues Norfolk Southern over toxic derailment

Smog a major buzzkill for insect mating

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.