. Space Industry and Business News .




.
FLORA AND FAUNA
Scientists Discover How Molecular Motors Go Into Energy Save Mode
by Staff Writers
Pittsburgh PA (SPX) Aug 17, 2011

Structural rendering of kinesin's two heads, called motor domains, cross-linked by a bound tail domain (green).

The transport system inside living cells is a well-oiled machine with tiny protein motors hauling chromosomes, neurotransmitters and other vital cargo around the cell. These molecular motors are responsible for a variety of critical transport jobs, but they are not always on the go. They can put themselves into "energy save mode" to conserve cellular fuel and, as a consequence, control what gets moved around the cell, and when.

A new study by Carnegie Mellon University biochemists, published in the Aug. 12 issue of Science, describes how the motors fold in on themselves, or save energy, when their transport services aren't required. According to the researchers, the solution to this molecular puzzle provides new insight into how molecular motor proteins are regulated, and may open new avenues for the treatment of various neurodegenerative diseases, such as Alzheimer's and Huntington's.

"Molecular motor proteins play a major role in all eukaryotic cells, but they are particularly critical to nerve cells," said David Hackney, professor of biological sciences in the Mellon College of Science, and one of the paper's authors.

"Nerve cells have this special problem where proteins, such as receptors for neurotransmitters, get synthesized in the cell body and have to be shipped all the way down the axon. Problems in this transport system may play a role in a number of neurological conditions."

Hackney focuses his research on kinesin-1, the principle motor protein that moves cargo from the nerve cell body down the axon. A typical kinesin molecule has two tails on one end that attach to the cargo and two globular heads on the other end that crank along fibers inside the cell called microtubules, pulling the cargo forward.

The movement of the heads, or motor domains, is fueled by the breakdown of ATP, a molecule that stores the energy that drives cellular work. When cargo isn't attached, kinesin folds in upon itself to prevent ATP from being squandered.

Although scientists knew that one tail binds to the two heads to keep it in a folded "autoinhibited" state, the molecular mechanism remains unclear. Several possibilities have been proposed, but these latest findings suggest only one solution.

Hackney worked with Hung Yi Kristal Kaan and Frank Kozielski at the Beatson Institute for Cancer Research in Glasgow, Scotland, who crystallized a key portion of the kinesin molecule - a tail that was bound to the heads.

The crystal structure confirmed that the complex contained two head domains and only one tail domain. Hackney then carried out biochemical manipulations to determine precisely how the tail interacts with the heads, which turned out to be what the authors refer to as a "double lockdown."

"It was actually a big surprise," Hackney said, "because it ruled out all of the obvious things that had been proposed for how the tail domain autoinhibits the motor domain. It does not cause a conformational change, and it does not block the surfaces that interact with ATP or the microtubular track."

Kinesin's heads are typically joined together at one spot, called the hinge. In the new structure, the heads swing in toward each other and are bridged by the tail domain, effectively cross-linking the heads at the site of tail binding.

This double lockdown - at the hinge and at the bridge - prevents the heads from separating. Because the heads need to be separate from each other to break down ATP, the double lockdown effectively stops the molecule from generating fuel to power the motor.

The researchers suggest that other kinesins may be regulated by the same autoinhibitory mechanism. Humans have dozens of different kinesin motors that transport a variety of cargo, including proteins associated with Alzheimer's, Huntington's and Parkinson's diseases.

Kinesins are also involved in separating chromosomes during cell division, making the motors a target for cancer therapies that seek to stop the motors from transporting chromosomes, which would prevent cancer cells from multiplying.

This research was supported by Cancer Research UK, the National Institutes of Health, the National Science Foundation and Singapore's Agency for Science, Technology and Research.




Related Links
Carnegie Mellon University
Darwin Today At TerraDaily.com

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries








. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



FLORA AND FAUNA
Sri Lanka completes elephant count
Colombo, Sri Lanka (UPI) Aug 16, 2011
Sri Lanka says it has completed the first nationwide survey of its elephant population, intended to increase protection of the animals and their habitat. The results of the survey in which 3.500 people counted the pachyderms from watchtowers near 1,500 watering holes and lakes will be released in a few weeks, the BBC reported. The survey was an attempt to classify the animals by ... read more


FLORA AND FAUNA
First quantitative measure of radiation leaked from Fukushima reactor

Shooting light a curve

Catalyst that makes hydrogen gas breaks speed record

Coffee stain helps smarter inks

FLORA AND FAUNA
Raytheon Develops Miniature Antenna To Extend Millimeter Wave Friendly ID Technology

China launches another experimental satellite

USAF Approves Production of NGC Deployable Digital Wireless System for Remote Warfighters

Raytheon BBN Technologies Awarded DoD Contract to Develop a Secure, Attributed Military Network System

FLORA AND FAUNA
NASA selects Virgin Galactic for Suborbital Flights

Arabsat-5C is welcomed in French Guiana for Arianespace's next Ariane 5 launch

SES-2 Satellite Launch Preparations Kick off in Kourou

Arianespace blasts another pair of satellites into orbit

FLORA AND FAUNA
S. Koreans file class action suit against Apple

Raytheon Wins Navy GPS Positioning, Navigation and Timing Service Contract

Technology Plays Important Role to Improve the Wine Industry

S. Korea to fine Apple over tracking feature

FLORA AND FAUNA
Embraer plans to build executive jets in China

Cathay Pacific first-half net profit falls 59%

Model will help monitor airport security

Making airport runways safer

FLORA AND FAUNA
Taking inspiration from spilled milk

Bilayer graphene: Another step toward graphene electronics

Strain and spin may enable ultra-low-energy computing

New tool may yield smaller and faster optoelectronics

FLORA AND FAUNA
Smoke from Virginia Lateral West Fire

Critical Milestone Reached for 2012 Landsat Mission

China to launch civil survey satellite late this year

NPP Satellite Completes Comprehensive Testing

FLORA AND FAUNA
Mercury-loving bugs speed help for toxic spills

Heavy metal in and around the lakes

In polluted Nigerian region, a disaster long in the making

China paper warns against demos after plant shuts


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement