Space Industry and Business News
SPACEMART
Satellite megaconstellations could impact ozone hole recovery
illustration only
Satellite megaconstellations could impact ozone hole recovery
by Clarence Oxford
Los Angeles CA (SPX) Jun 13, 2024

When old satellites fall into Earth's atmosphere and burn up, they leave behind tiny particles of aluminum oxide, which eat away at Earth's protective ozone layer. A new study finds these oxides have increased 8-fold between 2016 and 2022 and will continue to accumulate as the number of low-Earth-orbit satellites increases.

The 1987 Montreal Protocol successfully regulated ozone-damaging CFCs to protect the ozone layer, shrinking the ozone hole over Antarctica with recovery expected in the fifty years. But unanticipated growth of aluminum oxides may delay the ozone success story in decades to come.

Of the 8,100 objects in low Earth orbit, 6,000 are Starlink satellites launched in the last few years. Demand for global internet coverage is driving a rapid increase in launches of small communication satellite swarms. SpaceX is the leader in this enterprise, with permission to launch another 12,000 Starlink satellites and as many as 42,000 planned. Amazon and other companies worldwide are also planning constellations ranging from 3,000 to 13,000 satellites, the authors of the study said.

Internet satellites in low Earth orbit are short-lived, at about five years. Companies must then launch replacement satellites to maintain internet service, continuing a cycle of planned obsolescence and unplanned pollution.

Aluminum oxides spark chemical reactions that destroy stratospheric ozone, which protects Earth from harmful UV radiation. The oxides don't react chemically with ozone molecules, instead triggering destructive reactions between ozone and chlorine that deplete the ozone layer. Because aluminum oxides are not consumed by these chemical reactions, they can continue to destroy molecule after molecule of ozone for decades as they drift down through the stratosphere.

Yet little attention has been paid to pollutants formed when satellites fall into the upper atmosphere and burn. Earlier studies of satellite pollution largely focused on the consequences of propelling a launch vehicle into space, such as the release of rocket fuel. The new study, by a research team from the University of Southern California Viterbi School of Engineering, is the first realistic estimate of the extent of this long-lived pollution in the upper atmosphere, the authors said.

"Only in recent years have people started to think this might become a problem," said Joseph Wang, a researcher in astronautics at the University of Southern California and corresponding author of the new study. "We were one of the first teams to look at what the implication of these facts might be."

The study was published in the open-access AGU journal Geophysical Research Letters, which publishes high-impact, short-format reports with immediate implications spanning all Earth and space sciences.

Sleeping threat
Because it's effectively impossible to collect data from a spacecraft that's burning up, previous studies used analyses of micrometeoroids to estimate potential pollution. But micrometeoroids contain very little aluminum, the metal that makes up 15% to 40% of the mass of most satellites, so these estimates didn't apply well to new "swarm" satellites.

To get a more accurate picture of pollution from satellite re-entry, the researchers modeled the chemical composition of and bonds within satellites' materials as they interact at molecular and atomic levels. The results gave the researchers an understanding of how the material changes with different energy inputs.

In 2022, reentering satellites increased aluminum in the atmosphere by 29.5% over natural levels, the researchers found. The modeling showed that a typical 250-kilogram (550-pound) satellite with 30% of its mass being aluminum will generate about 30 kilograms (66 pounds) of aluminum oxide nanoparticles (1-100 nanometers in size) during its reentry plunge. Most of these particles are created in the mesosphere, 50-85 kilometers (30-50 miles) above Earth's surface.

The team then calculated that, based on particle size, it would take up to 30 years for the aluminum oxides to drift down to stratospheric altitudes, where 90% of Earth's ozone is located.

The researchers estimated that by the time the currently planned satellite constellations are complete, every year, 912 metric tons of aluminum (1,005 U.S. tons) will fall to Earth. That will release around 360 metric tons (397 U.S. tons) of aluminum oxides per year to the atmosphere, an increase of 646% over natural levels.

Research Report:Potential Ozone Depletion from Satellite Demise during Atmospheric Reentry in the Era of Satellite Mega-Constellations

Related Links
University of Southern California
The latest information about the Commercial Satellite Industry

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SPACEMART
Nara Space Secures $14.5M Series B to Expand Satellite Fleet
Tokyo, Japan (SPX) Jun 04, 2024
Nara Space Technology (Nara Space), a startup specializing in small satellite manufacturing and data analytics, announced the completion of a $14.5 million (20 billion KRW) Series B funding round. This brings the company's total funding to approximately $24.3 million (33.5 billion KRW) from previous rounds. The new funding round included three new investors: Samsung Securities, Shinhan Venture Investment, and JB Woori Capital. Six of the seven existing investors, including the Korea Development Ba ... read more

SPACEMART
Blue Canyon to supply spacecraft buses for NASA's PolSIR mission

10 Benefits of Using 360Learning for Your Company's Learning Needs

Where is the Best Place to Buy Used Books?

Security considerations in flight launcher software

SPACEMART
SES Space and Defense Successfully Demonstrates Multi-orbit, Multi-band LEO Relay

Iridium Secures Five-Year $94 Million Contract with Space Systems Command

EchoStar secures contract to provide 5G to US Navy and agencies

China launches communication test satellites into medium-Earth orbit

SPACEMART
SPACEMART
Green light for Galileo 2nd Generation satellite design

Europe's Largest Ground Segment Upgraded Without User Disruption

Magic Lane secures 3 million euro to enhance location intelligence capabilities

China Encourages BeiDou System Integration in Electric Bicycles

SPACEMART
Turkey signs deal with US to buy F-16 warplanes

Swiss fighter jets switch runway for motorway

French Mirage jets to join US F-16 in patchwork Ukraine air force

France to transfer Mirage-2000 fighter jets to Ukraine: Macron

SPACEMART
Searching for the Thinnest Metallic Wire

A roadmap for two-dimensional materials in information technology

Rocket Lab to Expand Semiconductor Production for Spacecraft with CHIPS Act Funding

UC San Diego Innovates with Protocol for Creating Functional Miniature Brain Models

SPACEMART
CADvizor to design an advanced harness for GEO-KOMPSAT-3

NASA Selects Proposals for Space Weather Study

EU puts digital Earth in orbit for climate-change fight

Ozone-harming gas declining faster than expected: study

SPACEMART
Air pollution linked to 135 million premature deaths: study

Thailand warns 'Jurassic World' producers over filming impact

Cambodia environmental activists boycott 'plotting' trial

Meet Neo Px: the super plant that attacks air pollution

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.