Space Industry and Business News  
EARTH OBSERVATION
SOFIA offers new way to study Earth's atmosphere
by Alison Hawkes for ARC
Moffett Field CA (SPX) Apr 02, 2021

More insights into Earth's atmosphere are to come. Measurements taken during SOFIA's observations from New Zealand, in the Southern Hemisphere's winter months, and during recent flights from Cologne, Germany, will provide information about how this region of the atmosphere changes across seasons and locations.

The Stratospheric Observatory for Infrared Astronomy, a joint project of NASA and the German Aerospace Center, DLR, has been used extensively to look many objects in the universe, from black holes to galaxies and even the Moon.

A decade ago, German researcher Heinz Hubers led a team to improve one of SOFIA's infrared instruments - the German Receiver for Astronomy at Terahertz Frequencies, or GREAT - with a new laser technology. He realized that the upgrade would not only help to study the distant cosmos, it could also be used much closer to home.

"SOFIA looks right through the Earth's upper atmosphere as it observes the universe beyond, and I thought it would be fascinating to someday collect data from the GREAT instrument that could benefit studies of our own atmosphere," said Hubers, director of DLR's Institute of Optical Sensor Systems and professor at Humboldt University in Berlin. "This is certainly not what you think of using SOFIA's instruments for, but I tucked away the idea until I had an opportunity to test it out."

Now, Hubers has proven it could be done. He recently published a paper with GREAT data that for the first time directly measured oxygen in one of the least understood regions of Earth's upper atmosphere, the mesosphere and lower thermosphere.

The SOFIA results more completely confirm what theory, direct, and indirect measurements had predicted about the concentration of oxygen in this atmospheric region. This further solidifies some of the basic science around how solar energy is exchanged between the surface and space. The results were published in Nature Communications Earth and Environment.

SOFIA observed a particular form of unbonded oxygen, known as atomic oxygen, which is distinct from the life-giving O2 found at the Earth's surface. Atomic oxygen plays an important role in cooling the upper atmosphere and therefore is used to estimate temperatures in this region.

Climate models predict that increasing greenhouse gases will raise temperatures in the lower atmosphere yet decrease temperatures in the mesosphere. A more accurate monitoring of the mesosphere's temperature can help researchers better understand the relationship between the lower and upper atmosphere. SOFIA's direct measurements improve these temperature estimates.

Beginning at about 30 miles up, the mesosphere and thermosphere have been difficult to study. Ground-based telescopes are hampered by the distortion of water vapor in the lower atmosphere. High-flying satellites rely on other substances to infer levels of oxygen but could not make direct measurements. Instruments that flew on rockets and even on the Space Shuttle in the 1990s offered a brief snapshot of these regions.

Flying at about 40,000 feet (or 7 miles high), SOFIA, which utilizes a Boeing 747SP, soars above 99.9% of the water vapor in the atmosphere and is big enough to carry the infrared instruments needed to directly measure oxygen.

More Than "Noise"
A trove of Earth's atmospheric data from many seasons and locations already exists in SOFIA's raw data archive. Yet, astronomers, interested in the stars, have always treated the atmospheric data as background "noise" and filtered it out from the sought-after celestial data. While Hubers saw that the atmospheric data could itself be valuable, it took several years to develop the right tools and processes to calibrate and analyze it.

"Given our previous successes, and the strong signal from Earth, it made sense to create the tools necessary to analyze atomic oxygen in the Earth's atmosphere," said Hubers. "Though the atmospheric data is really a byproduct of our astronomical observations, we are very pleased to see that SOFIA can contribute to better understanding our home planet."

The work may prove valuable. This particular result came from data collected in 2015 during a SOFIA science flight that took off from Palmdale, California. As the aircraft headed up the coast toward Canada, it pointed the telescope toward the globular-shaped Jellyfish nebula, 5,000 light years away, collecting the Earth's atmospheric data in the process.

More insights into Earth's atmosphere are to come. Measurements taken during SOFIA's observations from New Zealand, in the Southern Hemisphere's winter months, and during recent flights from Cologne, Germany, will provide information about how this region of the atmosphere changes across seasons and locations.


Related Links
Stratospheric Observatory for Infrared Astronomy
Earth Observation News - Suppiliers, Technology and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARTH OBSERVATION
Aerosol formation in clouds
Zurich, Switzerland (SPX) Mar 26, 2021
Researchers at the Paul Scherrer Institute PSI have studied for the first time how chemical reactions in clouds can influence the global climate. They found that isoprene, the dominant non-methane organic compound emitted into the atmosphere, can strongly contribute to the formation of organic aerosols in clouds. They published their results in the journal Science Advances. Aerosols, a mixture of solid or liquid particles suspended in the air, play an important role in Earth's climate. Aerosols or ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
A new technique to synthesize superconducting materials

Hitachi buys US software firm GlobalLogic for $9.6 bn

NASA tests mixed reality for mission operations for exploration

Tires turned into graphene that makes stronger concrete

EARTH OBSERVATION
Japan-Germany international joint experiment on space optical communication

Parsons awarded $250M Seabed-to-Space ISR contract

Air Force exercises push data integration from across military domains

Airbus, Fujitsu and Thales in team up for UK army future tactical communication program

EARTH OBSERVATION
EARTH OBSERVATION
MyGalileoSolution and MyGalileoDrone: A word from the winners

Google Maps to show more eco-friendly routes

Soyuz launch campaign for 2 Galileo satellites postponed Until November

Ten years of safer skies with Europe's other satnav system

EARTH OBSERVATION
Airbus to boost "cold" technology testing as part of its decarbonisation roadmap

China's top three airlines lose billions to pandemic

Astral Knight 2021 to take place at Aviano Air Base in Italy

Tyndall Air Force Base chosen for three new F-35 squadrons

EARTH OBSERVATION
Taiwan's TSMC plans $100 billion investment to meet demand

Study shows promise of quantum computing using factory-made silicon chips

Qubits comprised of holes could be the trick to build faster, larger quantum computers

Fire-hit chipmaker Renesas says recovery could take four months

EARTH OBSERVATION
Second Scout gets the go-ahead

China launches new Earth observation satellite

Utilis secures $6m from Beringea to harness satellites to protect critical infrastructure and global water supplies

SOFIA offers new way to study Earth's atmosphere

EARTH OBSERVATION
Sunscreen is a threat to coral reef health, but size of threat unknown

Operation Cleanup on plastic-polluted Lagos beach

Swiss police clear months-long protest at LafargeHolcim quarry

In Tunis, flamingos wade past waste in key Africa wetlands









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.