Space Industry and Business News  
TECH SPACE
Rusting iron can be its own worst enemy
by Staff Writers
Houston TX (SPX) Jan 22, 2022

Iron (blue) can react with trace amounts of water to produce corrosive chemicals despite being bathed in "inert" supercritical fluids of carbon dioxide. Atomistic simulations carried out at Rice University show how this reaction happens.

Iron that rusts in water theoretically shouldn't corrode in contact with an "inert" supercritical fluid of carbon dioxide. But it does.

The reason has eluded materials scientists to now, but a team at Rice University has a theory that could contribute to new strategies to protect iron from the environment.

Materials theorist Boris Yakobson and his colleagues at Rice's George R. Brown School of Engineering found through atom-level simulations that iron itself plays a role in its own corrosion when exposed to supercritical CO2 (sCO2) and trace amounts of water by promoting the formation of reactive species in the fluid that come back to attack it.

In their research, published in the Cell Press journal Matter, they conclude that thin hydrophobic layers of 2D materials like graphene or hexagonal boron nitride could be employed as a barrier between iron atoms and the reactive elements of sCO2.

Rice graduate student Qin-Kun Li and research scientist Alex Kutana are co-lead authors of the paper. Rice assistant research professor Evgeni Penev is a co-author.

Supercritical fluids are materials at a temperature and pressure that keeps them roughly between phases - say, not all liquid, but not yet all gas. The properties of sCO2 make it an ideal working fluid because, according to the researchers, it is "essentially inert," noncorrosive and low-cost.

"Eliminating corrosion is a constant challenge, and it's on a lot of people's minds right now as the government prepares to invest heavily in infrastructure," said Yakobson, the Karl F. Hasselmann Professor of Materials Science and NanoEngineering and a professor of chemistry. "Iron is a pillar of infrastructure from ancient times, but only now are we able to get an atomistic understanding of how it corrodes."

The Rice lab's simulations reveal the devil's in the details. Previous studies have attributed corrosion to the presence of bulk water and other contaminants in the superfluid, but that isn't necessarily the case, Yakobson said.

"Water, as the primary impurity in sCO2, provides a hydrogen bond network to trigger interfacial reactions with CO2 and other impurities like nitrous oxide and to form corrosive acid detrimental to iron," Li said.

The simulations also showed that the iron itself acts as a catalyst, lowering the reaction energy barriers at the interface between iron and sCO2, ultimately leading to the formation of a host of corrosive species: oxygen, hydroxide, carboxylic acid and nitrous acid.

To the researchers, the study illustrates the power of theoretical modeling to solve complicated chemistry problems, in this case predicting thermodynamic reactions and estimates of corrosion rates at the interface between iron and sCO2. They also showed all bets are off if there's more than a trace of water in the superfluid, accelerating corrosion.

Research Report: "Iron corrosion in the "inert" supercritical CO2, ab initio dynamics insights: How impurities matter"


Related Links
Rice University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Using ice to boil water
Blacksburg VA (SPX) Jan 22, 2022
Associate Professor Jonathan Boreyko and graduate fellow Mojtaba Edalatpour have made a discovery about the properties of water that could provide an exciting addendum to a phenomenon established over two centuries ago. The discovery also holds interesting possibilities for cooling devices and processes in industrial applications using only the basic properties of water. Their work was published on Jan. 21 in the journal Physical Review Fluids. Water can exist in three phases: a frozen solid, a li ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Rusting iron can be its own worst enemy

Now you don't see it and now you do

Facebook trumpets massive new supercomputer

Using ice to boil water

TECH SPACE
Teaming up to deliver a new Airborne ISR SATCOM capability for MilGov Operators

SES Government Solutions Launches On-Demand X-band Service Platform

Intelsat buys 2 Software-Defined Satellites from Thales Alenia Space to boost 5G solution

SPAINSAT NG program successfully passes Critical Design Review

TECH SPACE
TECH SPACE
Providing GPS-quality timing accuracy without GPS

Arianespace to launch eight new Galileo satellites

Two new satellites mark further enlargement of Galileo

Galileo satellites given green light for launch

TECH SPACE
Cathay Pacific says 'cash burn' will worsen over Hong Kong curbs

Performance analysis of evolutionary hydrogen-powered aircraft

Bye Aerospace eFlyer 800 Program Advances

Boeing invests $450 mn in air taxi venture

TECH SPACE
Bristol team chase down advantage in quantum race

Vibrating atoms make robust qubits, physicists find

Asymmetry is key to creating more stable blue perovskite LEDs

World's first hBN-based deep ultraviolet LED

TECH SPACE
Particles formed in boreal forests affect clouds in the troposphere

Flying with the clouds

SpaceX launches 44 SuperDove satellites for Planet Labs

Dimming Sun's rays should be off-limits, say experts

TECH SPACE
Oil cleanup crews replace bathers on Peru beaches; While floods damage Machu Picchu

Polish researchers invent anti-smog sound cannon

Environmental activist, 14, shot dead in Colombia

Microplastic pollution linger in rivers for years before entering oceans









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.