Subscribe free to our newsletters via your
. Space Industry and Business News .




CLIMATE SCIENCE
Rules of thumb for climate change turned upside down
by Staff Writers
Zurich, Switzerland (SPX) Sep 16, 2014


Dry becoming drier: an exceptional drought has brought water levels at Lake Mead to an historic low.

Based on models and observations, climate scientists have devised a simplified formula to describe one of the consequences of climate change: regions already marked by droughts will continue to dry out in the future climate. Regions that already have a moist climate will experience additional rainfall. In short: dry gets drier; wet gets wetter (DDWW).

However, this formula is less universally valid than previously assumed. This was demonstrated by a team of ETH climate researchers led by Peter Greve, lead author of a study recently published in Nature Geoscience.

Traditional analyses use metrics that can comprehensively describe climate characteristics above the ocean, but is problematic over land. While this fact was mentioned in said studies, scientific and public discourse has overlooked this aspect so far.

In their new study, the ETH researchers in the group headed by Sonia Seneviratne's, professor for land-climate dynamics, take into account the specific climatic properties of land surfaces, where the amount of available water is limited when compared with the ocean.

In their analysis, the climate scientists made use of measured data compiled solely on land, such as rainfall, actual evaporation and potential evaporation. The data derived from various sources was combined by Greve and his co-authors - this allowed them to extract trends in terms of a region's humidity and dryness. Furthermore, the researchers compared data from between 1948 and 1968 and 1984 to 2004.

Half of the surface areas show divergence
The evaluation shows no obvious trend towards a drier or wetter climate across three-quarters of the land are. There are solid trends for the remaining quarter. However, only half of this surface area follows the DDWW principle, i.e. one-eighth of the total landmass, while the trends seem to contradict this rule over the other half.

Some regions which should have become wetter according to the simple DDWW formula have actually become drier in the past - this includes parts of the Amazon, Central America, tropical Africa and Asia. On the other hand, there are dry areas that have become wetter: parts of Patagonia, central Australia and the Midwestern United States.

Nevertheless, the 'wet gets wetter' rule is largely confirmed for the Eastern United States, Northern Australia and northern Eurasia. 'Dry gets drier' also corresponds to indications in the Sahel region, the Arabian Peninsula and parts of Central Asia and Australia.

However, the DDWW principle does still applies to the oceans. "Our results emphasise how we should not overly rely on simplifying principles to asses past developments in dryness and humidity," Greve explains. This can be misleading, as it cannot do justice to the complexity of the underlying systems.

Greve P, Orlowsky B, Muller B, Sheffield J, Reichstein M, Seneviratne SI. Global assessment of trends in wetting and drying over land. Nature Geoscience, Advanced Online Publication 14th September 2014. DOI: 10.1038/ngeo2247

.


Related Links
ETH Zurich
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CLIMATE SCIENCE
Tiny Diamonds Point To Cosmic Impact For Major Period of Climate Change
Chicago IL (SPX) Sep 16, 2014
Around 12,800 years ago, a sudden, catastrophic event plunged much of the Earth into a period of cold climatic conditions and drought. This drastic climate change - the Younger Dryas - coincided with the extinction of Pleistocene megafauna, such as the saber-tooth cats and the mastodon, and resulted in major declines in prehistoric human populations, including the termination of the Clovis cultu ... read more


CLIMATE SCIENCE
Microsoft powers up game platform with 'Minecraft'

Researchers control surface tension to manipulate liquid metals

Scientists twist radio beams to send data

Scientists come closer to the industrial synthesis of a material harder than diamond

CLIMATE SCIENCE
Harris Corporation supply Falcon III RF-340M radios to U.S. military

Middle East entity orders Harris tactical radios

FirstNet-related Tactical LTE Communications System at Urban Shield Exercise

Intelsat General Extends Contract to Provide Satellite Capacity to Forces in Afghanistan

CLIMATE SCIENCE
Proton Launches May Compete on Price With US Falcons

SpaceX's next cargo launch set for Sept 20

MEASAT-3b and Optus 10 given go-ahead for Ariane 5 Sept 11 launch

SpaceX launches AsiaSat 6 satellite

CLIMATE SCIENCE
Western Sanctions Fail to Impede GLONASS Satellite Production

Thales to improve GPS satellite navigation system

Exelis boasts of its GPS signal interference product

Lockheed Martin-Built gps IIR/IIR-M satellites reach 200 years of combined operational life

CLIMATE SCIENCE
IBC Engineered Materials to Supply BeralCast Castings for F-35

Congress notified of possible helo sale to Brazil

Flight MH17 hit by numerous 'high energy objects'

Singapore has full fleet of Alenia Aermacchi trainer planes

CLIMATE SCIENCE
Method detects prize particle for future quantum computing

Program Grows Lasers Directly on Silicon-Based Microchips

New species of electrons can lead to better computing

The quantum revolution is a step closer

CLIMATE SCIENCE
Severe flooding in Northern Pakistan photographed by NASA

EIAST announces Remote Sensing Applications Competition 2014

NASA's RapidScat: Some Assembly Required - in Space

NASA Awards Ozone Mapping and Profiling Suite Modification for JPS-2 Mission

CLIMATE SCIENCE
Plastic pollution choking Australian waters: study

Proposed trash plant sparks protests in southern China

Mexico mine sets aside $147 mn for spill damages

Scientists discover hazardous waste-eating bacteria




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.