Space Industry and Business News  
ROCKET SCIENCE
Rocket Lab to recover Electron Booster on next mission
by Staff Writers
Long Beach CA (SPX) Apr 11, 2021

Following the successful completion of the ocean splashdown tests this year, Rocket Lab intends to move into the final phase of the recovery program - mid-air recovery. Using this approach, Electron stages will be captured mid-air by a helicopter.

Rocket Lab reports that on its next mission the company will attempt to bring a rocket back from space, slowing the Electron launch vehicle down from speeds of >Mach 8 as it re-enter's Earth's atmosphere before splashing the rocket down in the ocean.

The complex mission is the next major step toward making Electron the first orbital-class reusable small launch vehicle, enabling rapid-turnaround launches for small satellites.

Scheduled for launch in May 2021 from Launch Complex 1 in New Zealand, the 'Running Out of Toes', mission will be Rocket Lab's 20th Electron launch overall and the second of three planned ocean splashdown recovery missions.

The mission will see Electron deploy two Earth-observation satellites for BlackSky's global monitoring constellation. While Electron's second stage delivers the satellites to orbit, Electron's first stage will undertake a series of complex maneuvers designed to enable the stage to survive the extreme heat and forces of atmospheric re-entry on the way back to Earth.

As the rocket reaches speeds of around eight times the speed of sound on its descent, the air around Electron heats up to 2,400 C generating an extremely hot plasma that creates a red-orange glow around the re-entering stage.

Because Electron will enter the atmosphere engines first, the nine 3D printed Rutherford engines on the first stage will bear the brunt of this extreme heating. To withstand the immense temperatures, this Electron features an evolved heat shield designed to protect the engines and direct the force of the plasma away from the rocket.

After entering the atmosphere, Electron will deploy a drogue parachute to help begin the process of slowing the rocket down and stabilizing its descent. Once Electron is at subsonic speeds, a circular parachute is deployed to help further slow the rocket in preparation for a gentle ocean splashdown.

A Rocket Lab vessel will then rendezvous with the stage in the splashdown zone, approximately 650 km from Launch Complex 1, and retrieve it for transport back to Rocket Lab's Production Complex for inspection.

'Running Out of Toes' follows on from Rocket Lab's first recovery mission, 'Return to Sender', which launched in November 2020 and saw the company successfully deploy the parachute system and recover a stage from an ocean splashdown for the first time.

In doing so, Rocket Lab became only the second company to successfully recover an orbital class booster from space. The 'Running Out of Toes' mission is designed to validate the findings from the first recovery mission and to test updated systems including the new advanced heat shield.

"Reusability is hard for any launch vehicle, but it's a particularly complex challenge for small rockets. The Return to Sender mission proved we could successfully bring Electron back from space. Now it's about validating re-entry data a second time and starting to introduce the advanced systems that will enable us to launch, catch and repeat," said Rocket Lab founder and CEO Peter Beck.

"Electron is already the second most frequently launched U.S. rocket. Reusability will enable us to further increase launch cadence giving our customers on-demand access to space."

Following the successful completion of the ocean splashdown tests this year, Rocket Lab intends to move into the final phase of the recovery program - mid-air recovery. Using this approach, Electron stages will be captured mid-air by a helicopter.

While Electron is designed for mid-air capture, Rocket Lab's newest launch vehicle, the 8,000 kg class Neutron rocket under development, is designed for propulsive landing. This process will see Neutron's engines reignite during the re-entry phase to slow the stage's descent before landing legs are deployed to enable a vertical landing on an ocean platform.


Related Links
Neutron at Rocket Lab
Rocket Science News at Space-Travel.Com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ROCKET SCIENCE
Gilmour Space to launch Fleet satellites in 2023
Gold Coast, Australia (SPX) Mar 31, 2021
Two of Australia's New Space pioneers - Queensland-based rocket manufacturer Gilmour Space Technologies, and South Australian nanosatellite manufacturer for the Internet of Things (IoT), Fleet Space Technologies - are joining forces to launch small satellites to orbit. "We have signed a contract to launch six Fleet Space Centauri nanosatellites on our Eris rockets in 2023," said Adam Gilmour, the CEO of Gilmour Space, which is tracking to launch its first commercial payloads to orbit next year. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROCKET SCIENCE
US restricts trade with Chinese supercomputers centers

German Space Agency Selects Lockheed Martin iSpace System For Space Situational Awareness

US adds Chinese supercomputer centers to export blacklist

3D-printed bioreactor allows scientists to watch tiny brains grow

ROCKET SCIENCE
Japan-Germany international joint experiment on space optical communication

Parsons awarded $250M Seabed-to-Space ISR contract

Air Force exercises push data integration from across military domains

Airbus, Fujitsu and Thales in team up for UK army future tactical communication program

ROCKET SCIENCE
ROCKET SCIENCE
MyGalileoSolution and MyGalileoDrone: A word from the winners

Google Maps to show more eco-friendly routes

Soyuz launch campaign for 2 Galileo satellites postponed Until November

Ten years of safer skies with Europe's other satnav system

ROCKET SCIENCE
USAF F-22s participate in interoperability exercises with Japanese forces

Air Force releases new mission statement focused on airpower

U.S. F-16s to participate in Greek-led training exercise

Boeing begins building P-8A planes for Norway

ROCKET SCIENCE
Qubits comprised of holes could be the trick to build faster, larger quantum computers

AFRL approves Cooperative Research And Development agreement for silicon photonics

Quantifying utility of quantum computers

Taiwan's TSMC plans $100 billion investment to meet demand

ROCKET SCIENCE
Tokyo, as you've never seen it before

Hawkeye 360 announces commissioning of second satellite cluster

SOFIA offers new way to study Earth's atmosphere

NASA selects Geostationary and Extended Orbits Imager Phase A Contracts

ROCKET SCIENCE
Plastic particles proliferate globally, spread by ocean waves and through the air

'Dirty and ugly' city? Paris slams viral campaign

Operation Cleanup on plastic-polluted Lagos beach

Ghana investigates after dead fish, dolphins wash up on shore









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.