Space Industry and Business News
WATER WORLD
Rice researchers find waste water highly effective for treating wastewater
illustration only
Rice researchers find waste water highly effective for treating wastewater
by Clarence Oxford
Los Angeles CA (SPX) Jan 10, 2025

Researchers at Rice University, in partnership with Guangdong University of Technology, have devised an innovative approach for treating high-salinity organic wastewaters using dialysis-a method commonly used in medical applications. This technique effectively separates salts and organic compounds while minimizing wastewater dilution, potentially lowering costs and reducing environmental impacts across various industries.

Dialysis is traditionally employed in medicine to filter waste and excess fluid from the blood of patients with kidney failure. Blood is passed through a dialyzer, where it is cleansed before being returned to the body. Inspired by this medical technology, researchers have adapted the method to address industrial wastewater challenges.

"Dialysis was astonishingly effective in separating the salts from the organics in our trials," said Menachem Elimelech, a corresponding author of the study and the Nancy and Clint Carlson Professor of Civil and Environmental Engineering and Chemical and Biomolecular Engineering. "It's an exciting discovery with the potential to redefine how we handle some of our most intractable wastewater challenges."

High-salinity organic wastewaters, common in industries such as petrochemicals, pharmaceuticals, and textiles, are notoriously difficult to treat. Current methods like biological treatment and advanced oxidation are often hampered by high salinity, while thermal methods are energy-intensive and prone to operational inefficiencies. Pressure-driven membrane processes frequently face membrane fouling, necessitating extensive wastewater dilution and complicating operations.

"Traditional methods often demand a lot of energy and require repeated dilutions," said Yuanmiaoliang "Selina" Chen, a co-first author and postdoctoral student in Elimelech's lab at Rice. "Dialysis eliminates many of these pain points, reducing water consumption and operational overheads."

The research team conducted bench-scale dialysis experiments combined with detailed transport modeling to assess dialysis's effectiveness. Using commercial ultrafiltration membranes with varied molecular weight cutoffs, they investigated salt transport and organic rejection. A bilateral countercurrent flow setup enabled wastewater and freshwater streams to flow on opposite sides of the membrane without hydraulic pressure. Salts diffused into the dialysate, leaving the organics concentrated in the original solution.

The researchers measured performance by tracking salt and water fluxes, analyzing organic concentrations before and after dialysis, and evaluating membrane resistance to fouling during prolonged operation. Mathematical models were developed to further explore the mechanisms behind salt and water transport.

Results showed dialysis effectively separated salts from small, neutral organic molecules without requiring large amounts of fresh water. This diffusion-driven process enabled salts and organics to move across the membrane at different speeds, enhancing separation efficiency compared to ultrafiltration.

"We found that one of the biggest advantages of dialysis for wastewater treatment is the potential for resource recovery," Elimelech said. "Beyond simply treating the wastewater, we can also recover valuable salts or chemicals, contributing to a more circular economy."

Another notable advantage of dialysis is its resistance to fouling. Unlike pressure-driven systems, which often suffer from organic material buildup, dialysis avoids hydraulic pressure, resulting in lower energy use, reduced maintenance needs, and fewer membrane replacements.

"By forgoing hydraulic pressure altogether, we minimized the risk of fouling, which is one of the biggest hurdles in membrane-based treatment," said Zhangxin Wang, a co-corresponding author and professor at Guangdong Tech's School of Ecology, Environment, and Resources. "This allows for a more stable and consistent performance over extended operating cycles."

While dialysis alone doesn't completely purify wastewater, it effectively reduces salinity, making advanced treatments like biological processes or zero-liquid discharge systems more efficient.

"Dialysis offers a sustainable solution for treating complex, high-salinity waste streams by conserving freshwater, reducing energy costs, and minimizing fouling," Elimelech said. "Its diffusion-driven approach could revolutionize the treatment of some of the most challenging industrial wastewaters."

Research Report:Dialysis opens a new pathway for high-salinity organic wastewater treatment

Related Links
Rice University
Water News - Science, Technology and Politics

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
WATER WORLD
A quarter of freshwater species face extinction: study
Paris (AFP) Jan 8, 2025
A quarter of freshwater animals, including fish, insects and crustaceans, are at high risk of extinction due to threats including pollution, dams and farming, according to a new study published on Wednesday. Freshwater - including rivers, aquifers, lakes and wetlands - covers less than one percent of Earth's surface but hosts more than 10 percent of known species, including half of fish and one-third of vertebrates. This diversity supports the livelihoods of billions of people and provides a b ... read more

WATER WORLD
Researchers develop breakthrough one-step flame retardant for cotton textiles

Developing printable droplet laser displays

Revealing new insights into single-atom metal alloy properties

Harnessing corrosion to create sustainable lightweight alloys

WATER WORLD
Controversy in Italy over potential deal with Musk's SpaceX

Quadsat and NATO NCIA validate Quadsat system for WGS compliance testing

ESA to support development of secure EU communications satellite constellation

IRIS2 contract signed to strengthen Europe's space connectivity and security

WATER WORLD
WATER WORLD
SpaceX launches Space Force Rapid Response Trailblazer

GPS alternative for drone navigation leverages celestial data

Deciphering city navigation AI advances GNSS error detection

China advances next-generation BeiDou satellite navigation system

WATER WORLD
South Korea begins lifting Jeju Air wreckage after fatal crash

Black box of Azerbaijan crashed plane sent to Brazil for investigation: authorities

Several airlines cancel flights to Russia after Azerbaijan Airlines crash

Airbus US Space and Defense partners with Aerostar to advance stratospheric ISR technologies

WATER WORLD
Physicists measure quantum geometry for the first time

Fast control methods enable record-setting fidelity in superconducting qubit

Quantum computing advances with silicon-based donor spin qubits

Dutch and US tighten controls on advanced chips tech to curb flow to China

WATER WORLD
Constellr launches first satellite pioneering global thermal monitoring

Clouds play key role in moderating Earth's surface warming

NASA grant awarded to enhance AI-driven satellite weather forecasting

SIIS Signs MOU with Pixxel to Expand Hyperspectral Data Solutions in Korea

WATER WORLD
Herbicide under US scrutiny over potential Parkinson's link

Spain busts network illegally importing Italian waste

Oil spill reaches Ukraine's Zaporizhzhia region: official

Heavy fuel oil makes Black Sea spill hard to clean up

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.