Space Industry and Business News  
ENERGY TECH
Revised computer code accurately models an instability in fusion plasmas
by Staff Writers
Plainsboro NJ (SPX) Jul 26, 2019

file illustration only

Subatomic particles zip around ring-shaped fusion machines known as tokamaks and sometimes merge, releasing large amounts of energy. But these particles - a soup of charged electrons and atomic nuclei, or ions, collectively known as plasma - can sometimes leak out of the magnetic fields that confine them inside tokamaks.

The leakage cools the plasma, reducing the efficiency of the fusion reactions and damaging the machine. Now, physicists have confirmed that an updated computer code could help to predict and ultimately prevent such leaks from happening.

The research team updated TRANSP, the plasma simulation code developed at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and used in fusion research centers around the world, by installing a new bit of code known as a kick model into one of the TRANSP components.

The kick model - so called because it simulates jolts of energy that kick the particles within the plasma - allows TRANSP to simulate particle behavior more accurately than before. Aided by subprograms known as NUBEAM and ORBIT that model plasma behavior by distilling information from raw data, this updated version of TRANSP could help physicists better understand and predict the leaks, as well as create engineering solutions to minimize them.

Fusion, the power that drives the sun and stars, is the fusing of light elements in the form of plasma - the hot, charged state of matter composed of free electrons and atomic nuclei - that generates massive amounts of energy. Scientists are seeking to replicate fusion on Earth for a virtually inexhaustible supply of power to generate electricity.

The team found that the updated version of TRANSP accurately modeled the effect of the sawtooth instability - a kind of disturbance affecting the fusion reactions - on the movement of highly energetic particles that help cause fusion reactions.

"These results are important because they may allow physicists to use the same approach to deal with a broad spectrum of instabilities without switching from one model to another depending on the specific problem," said PPPL physicist Mario Podesta, a coauthor of the paper that reported the findings in Nuclear Fusion.

The results, based on sawtooth instabilities that occurred during operation of PPPL's National Spherical Torus Experiment-Upgrade (NSTX-U) in 2016, extend previous PPPL research into putting kick models into TRANSP.

The updated version of TRANSP can simulate plasma behavior of experiments that have not been conducted yet, Podesta said. "Because we understand the physics built into the kick model, and because that model successfully simulated results from past experiments for which we have data, we have confidence that the kick model can accurately model future experiments," he said.

In the future, the researchers want to determine what happens between instabilities to get a fuller sense of what's occuring in the plasma. In the meantime, Podesta and the other scientists are encouraged by the current results.

"We now see a path forward to improving the ways that we can simulate certain mechanisms that disturb plasma particles," Podesta said. "This brings us closer to reliable and quantitative predictions for the performance of future fusion reactors."

Research paper


Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
A new way to measure the stability of next-generation magnetic fusion devices
Plainsboro NJ (SPX) Jul 11, 2019
Scientists seeking to bring to Earth the fusion that powers the sun and stars must control the hot, charged plasma - the state of matter composed of free-floating electrons and atomic nuclei, or ions - that fuels fusion reactions. For scientists who confine the plasma in magnetic fields, a key task calls for mapping the shape of the fields, a process known as measuring the equilibrium, or stability, of the plasma. At the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory ( ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Probe opened in France over radioactive water rumours

Raytheon get $27.4M payment for work on Navy's AMDR program

Mapping the Moon and Worlds Beyond

Raytheon nets $40.2M for variants of Navy's AN/SPY-6 radar

ENERGY TECH
Newly established US Space Agency offers sneak peek at satellite layout

AEHF-5 encapsulated and prepared for launch

Corps begins fielding mobile satellite communication system

AFRL demonstrates world's first daytime free-space quantum communication enabled by adaptive optics

ENERGY TECH
ENERGY TECH
Europe's Galileo GPS system back after six-day outage

Europe's GPS rival Galileo suffers outage

Second Lockheed Martin-Built GPS III Satellite Ready for July 25 Liftoff

Planes landing in Israel see GPS signals disrupted

ENERGY TECH
Bulgaria parliament ratifies costly deal to buy eight F-16s

Lockheed Martin awarded $112.4M for work on F-35

Britain's first P-8A Poseidon takes flight near Boeing plant

Bulgaria to acquire eight F-16 fighter planes in $1.25B deal

ENERGY TECH
EU fines chipmaker Qualcomm 242 mn euros for 'predatory' pricing

Will your future computer be made using bacteria

'Tsunami' on a silicon chip: a world first for light waves

On the way to printable organic light emitting diodes

ENERGY TECH
Earth's Shining Upper Atmosphere - From the Apollo Era to the Present

Animal observation system ICARUS is switched on

PlanetiQ secures $18.7M Series B financing round

First new DoD NEXRAD weather radar installed at Cannon Air Force Base

ENERGY TECH
Shanghai leads battle against China's rising mountain of trash

Tourist rush at Australia's Uluru before climb ban

Light pollution puts Nemo's offspring at risk

Troubled waters: China-fuelled cruise boom sparks environment fears









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.