Space Industry and Business News  
CARBON WORLDS
Researchers use recycled carbon fiber to improve permeable pavement
by Staff Writers
Pullman WA (SPX) Mar 06, 2018

Water runs through Washington State University pervious pavement.

A Washington State University research team is solving a high-tech waste problem while addressing the environmental challenge of stormwater run-off. The researchers have shown they can greatly strengthen permeable pavements by adding waste carbon fiber composite material. Their recycling method, described in the March issue of the Journal of Materials in Civil Engineering, doesn't require using much energy or chemicals - a critical factor for recycling waste materials.

Unlike the impermeable pavement that is used for most roads and parking lots, pervious concrete allows rainwater to freely drain and seep into the ground underneath. Because of increasing concerns about flooding in urban areas and requirements for controlling stormwater run-off, several cities have tried using the pervious concrete in parking lots and low-traffic streets. But because it is highly porous, it is not as durable as the traditional concrete that is used on major roads.

Recycling carbon fiber
Carbon fiber composites, meanwhile, have become increasingly popular in numerous industries. Super light and strong, the material is used in everything from airplane wings to wind turbines and cars. While the market is growing about 10 percent per year, however, industries have not figured out a way to easily recycle their waste, which is as much as 30 percent of the material used in production.

Led by Karl Englund, associate research professor, and Somayeh Nassiri, assistant professor in the Department of Civil and Environmental Engineering, the researchers added carbon fiber composite scrap that they received from Boeing manufacturing facilities to their pervious concrete mix.

They used mechanical milling to refine the composite pieces to the ideal sizes and shapes. The added material greatly increased both the durability and strength of pervious concrete.

"In terms of bending strength, we got really good results - as high as traditional concrete, and it still drains really quickly," said Nassiri.

sMilling vs. heat or chemicals
The researchers used inexpensive milling techniques instead of heat or chemicals to create a reinforcing element from the waste carbon fiber composites. They maintained and made use of the original strength of the composites by keeping them in their cured composite form. Their mix also required using a lot of the composite material, which would be ideal for waste producers.

"You're already taking waste - you can't add a bunch of money to garbage and get a product," said Englund. "The key is to minimize the energy and to keep costs down."

The composite materials were dispersed throughout the pavement mix to provide uniform strength.

Testing and mainstreaming
While they have shown the material works at the laboratory scale, the researchers are beginning to conduct real-world tests on pavement applications. They are also working with industry to begin developing a supply chain.

"In the lab this works to increase permeable pavement's durability and strength," said Nassiri. "The next step is to find out how to make it mainstream and widespread."

The research for this project was made possible through a partnership with the Boeing Company.

Research paper


Related Links
Washington State University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CARBON WORLDS
Method of tracking reactions between air and carbon-based compounds established
Blacksburg VA (SPX) Mar 01, 2018
By being the first to fully track the changing chemistry of carbon molecules in the air, a Virginia Tech professor could change the way we study pollutants, smog, and emissions to the atmosphere. Gabriel Isaacman-VanWertz, lead scientist on a new study published in Nature Chemistry and assistant professor in Virginia Tech's department of civil and environmental engineering, has established a method of tracking reactions between air and carbon-based compounds - a feat that has been previously elusi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Researchers demonstrate promising method for improving quantum information processing

Silk fibers could be high-tech 'natural metamaterials'

Squid skin could be the solution to camouflage material

Atomic structure of ultrasound material not what anyone expected

CARBON WORLDS
Airbus to provide near real-time access to its satellite data

Increasing Situational Awareness with Fortion TacticalC2

British astronaut hails 'groundbreaking' Airbus satellite

Northrop Grumman gets production, support contracts for E-2D Hawkeye

CARBON WORLDS
CARBON WORLDS
Why Russia is one step ahead of US Army's plans for future GPS

Europe claims 100 million users for Galileo satnav system

Airbus selected by ESA for EGNOS V3 program

Pentagon probes fitness-app use after map shows sensitive sites

CARBON WORLDS
MH370 hunt likely to end mid-June: official

Air Force awards contract for jet fighter training programs

Trump, Boeing finalize cheaper deal for new Air Force One

France to block Chinese group taking control of Toulouse airport

CARBON WORLDS
Memtransistor brings world closer to brain-like computing

Microchip Technology buys rival for $8.3 bn

Qualcomm open to further takeover talks if Broadcom boosts price

Unconventional superconductor may be used to create quantum computers of the future

CARBON WORLDS
NASA joins international science team in exploring auroral cusp from Norway

How does GEOS-5-based planetary boundary layer height and humidity vary across China?

New partnership aids sustainable growth with earth observations

CloudSat Exits the 'A-Train'

CARBON WORLDS
Vietnam suspends steel firms after pollution protests

Gabon accuses France's Veolia of pollution

UK, EU spar over who will be greenest after Brexit

German nights get brighter - but not everywhere









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.