Space Industry and Business News  
TECH SPACE
Researchers unveil a secret of stronger metals
by David Chandler, MIT News Office
Boston MA (SPX) May 20, 2022

For the first time, researchers have described how the tiny crystalline grains that make up most solid metals actually form. Understanding this process, they say, could theoretically lead to ways of producing stronger, lighter versions of widely used metals such as aluminum, steel and titanium.

Forming metal into the shapes needed for various purposes can be done in many ways, including casting, machining, rolling, and forging. These processes affect the sizes and shapes of the tiny crystalline grains that make up the bulk metal, whether it be steel, aluminum or other widely used metals and alloys.

Now researchers at MIT have been able to study exactly what happens as these crystal grains form during an extreme deformation process, at the tiniest scales, down to a few nanometers across. The new findings could lead to improved ways of processing to produce better, more consistent properties such as hardness and toughness.

The new findings, made possible by detailed analysis of images from a suite of powerful imaging systems, are reported today in the journal Nature Materials, in a paper by former MIT postdoc Ahmed Tiamiyu (now assistant professor at the University of Calgary); MIT professors Christopher Schuh, Keith Nelson, and James LeBeau; former student Edward Pang; and current student Xi Chen.

"In the process of making a metal, you are endowing it with a certain structure, and that structure will dictate its properties in service," Schuh says. In general, the smaller the grain size, the stronger the resulting metal. Striving to improve strength and toughness by making the grain sizes smaller "has been an overarching theme in all of metallurgy, in all metals, for the past 80 years," he says.

Metallurgists have long applied a variety of empirically developed methods for reducing the sizes of the grains in a piece of solid metal, generally by imparting various kinds of strain through deforming it in one way or another. But it's not easy to make these grains smaller.

The primary method is called recrystallization, in which the metal is deformed and heated. This creates many small defects throughout the piece, which are "highly disordered and all over the place," says Schuh, who is the Danae and Vasilis Salapatas Professor of Metallurgy.

When the metal is deformed and heated, then all those defects can spontaneously form the nuclei of new crystals. "You go from this messy soup of defects to freshly new nucleated crystals. And because they're freshly nucleated, they start very small," leading to a structure with much smaller grains, Schuh explains.

What's unique about the new work, he says, is determining how this process takes place at very high speed and the smallest scales. Whereas typical metal-forming processes like forging or sheet rolling, may be quite fast, this new analysis looks at processes that are "several orders of magnitude faster," Schuh says.

"We use a laser to launch metal particles at supersonic speeds. To say it happens in the blink of an eye would be an incredible understatement, because you could do thousands of these in the blink of an eye," says Schuh.

Such a high-speed process is not just a laboratory curiosity, he says. "There are industrial processes where things do happen at that speed." These include high-speed machining; high-energy milling of metal powder; and a method called cold spray, for forming coatings. In their experiments, "we've tried to understand that recrystallization process under those very extreme rates, and because the rates are so high, no one has really been able to dig in there and look systematically at that process before," he says.

Using a laser-based system to shoot 10-micrometer particles at a surface, Tiamiyu, who carried out the experiments, "could shoot these particles one at a time, and really measure how fast they are going and how hard they hit," Schuh says. Shooting the particles at ever-faster speeds, he would then cut them open to see how the grain structure evolved, down to the nanometer scale, using a variety of sophisticated microscopy techniques at the MIT.nano facility, in collaboration with microscopy specialists.

The result was the discovery of what Schuh says is a "novel pathway" by which grains were forming down to the nanometer scale. The new pathway, which they call nano-twinning assisted recrystallization, is a variation of a known phenomenon in metals called twinning, a particular kind of defect in which part of the crystalline structure flips its orientation. It's a "mirror symmetry flip, and you end up getting these stripey patterns where the metal flips its orientation and flips back again, like a herringbone pattern," he says. The team found that the higher the rate of these impacts, the more this process took place, leading to ever smaller grains as those nanoscale "twins" broke up into new crystal grains.

In the experiments they did using copper, the process of bombarding the surface with these tiny particles at high speed could increase the metal's strength about tenfold. "This is not a small change in properties," Schuh says, and that result is not surprising since it's an extension of the known effect of hardening that comes from the hammer blows of ordinary forging. "This is sort of a hyper-forging type of phenomenon that we're talking about."

In the experiments, they were able to apply a wide range of imaging and measurements to the exact same particles and impact sites, Schuh says: "So, we end up getting a multimodal view. We get different lenses on the same exact region and material, and when you put all that together, you have just a richness of quantitative detail about what's going on that a single technique alone wouldn't provide."

Because the new findings provide guidance about the degree of deformation needed, how fast that deformation takes place, and the temperatures to use for maximum effect for any given specific metals or processing methods, they can be directly applied right away to real-world metals production, Tiamiyu says. The graphs they produced from the experimental work should be generally applicable. "They're not just hypothetical lines," Tiamiyu says. For any given metals or alloys, "if you're trying to determine if nanograins will form, if you have the parameters, just slot it in there" into the formulas they developed, and the results should show what kind of grain structure can be expected from given rates of impact and given temperatures.

Research Report:"Nanotwinning-assisted dynamic recrystallization at high strains and strain rates"


Related Links
Massachusetts Institute of Technology
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Ultracold Bubbles on Space Station Open New Avenues of Quantum Research
Pasadena CA (JPL) May 19, 2022
Since the days of NASA's Apollo program, astronauts have documented (and contended with) how liquids behave differently in microgravity than they do on Earth - coalescing into floating spheres instead of bottom-heavy droplets. Now, researchers have demonstrated this effect with a much more exotic material: gas cooled to nearly absolute zero (minus 459 degrees Fahrenheit, or minus 273 degrees Celsius), the lowest temperature matter can reach. Using NASA's Cold Atom Lab, the first-ever quantum physi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Researchers unveil a secret of stronger metals

Advancing fundamental drilling science

Surprising turbulence

Dutch use deepfake teen to appeal for murder witnesses

TECH SPACE
Blasting out Earth's location with the hope of reaching aliens is a controversial idea

Yahsat awarded $23M contract to supply advanced satellite communications for UAE satellites

Defence Innovation Agency signs with Exotrail for software solution for French Space Command

Space Force to use ViaLite's wideband links for satellite backhaul services

TECH SPACE
TECH SPACE
Xona passes critical testing milestone as private GNSS readies for launch

China Satellite Navigation Conference to highlight digital economy, intelligent navigation

406 Day: how Galileo helps save lives

NASA uses moonlight to improve satellite accuracy

TECH SPACE
Activists hand KLM ultimatum for 'greenwashing' case

Liberty Lifter aims to Revolutionize Heavy Air Lift

Introducing Quesst: speed never sounded so quiet

Major boost for sustainable aviation research

TECH SPACE
Thermal insulation for quantum technologies

The way of water: Making advanced electronics with H2O

Going gentle on mechanical quantum systems

US, EU team up on chip making and Russia disinformation

TECH SPACE
Next-generation weather models cross the divide to real-world impact

NASA selects firms for NOAA Atmospheric Composition Instrument study

Earth from Space: Arc de Triomphe

Earth from Orbit: NOAA Debuts First Imagery from GOES-18

TECH SPACE
Trawling Iraq's threatened marshes to collect plastic waste

Pollution behind 1 in 6 global deaths in 2019: study

Philippine province lifts open-pit mining ban, paves way for Tampakan project: official

How microplastics in the air are polluting the most remote places on earth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.