Space Industry and Business News
TECH SPACE
Researchers uncover strong light-matter interactions in quantum spin liquids
illustration only
Researchers uncover strong light-matter interactions in quantum spin liquids
by Alex Becker for Rice News
Houston, TX (SPX) Dec 16, 2024

Physicists have long theorized the existence of a unique state of matter known as a quantum spin liquid. In this state, magnetic particles do not settle into an orderly pattern, even at absolute zero temperature. Instead, they remain in a constantly fluctuating, entangled state. This unusual behavior is governed by complex quantum rules, leading to emergent properties that resemble fundamental aspects of our universe such as the interactions of light and matter. Despite its intriguing implications, experimentally proving the existence of quantum spin liquids and exploring their distinctive properties has been extremely challenging.

In a paper recently published in Nature Physics, an international group of researchers comprised of an experimental team from Switzerland and France and theoretical physicists in Canada and the U.S., including Rice University, have found evidence of this enigmatic quantum spin liquid in a material known as pyrochlore cerium stannate. They achieved this by combining state-of-the-art experimental techniques, including neutron scattering at extremely low temperatures, with theoretical analysis. By measuring the way in which neutrons interact magnetically with the electron spin in pyrochlore, the researchers observed the collective excitations of spins interacting strongly with lightlike waves.

"Fractional matter quasiparticles, long theorized in quantum spin liquids, required significant advancements in experimental resolution to be convincingly tested in this type of material," said Romain Sibille, the leader of the experimental team at Paul Scherrer Institute in Switzerland. "The actual neutron scattering experiment was performed on a highly specialized spectrometer at the Institut Laue-Langevin in Grenoble, France, allowing us to obtain extremely high-resolution data."

"Neutron scattering is a well-established tool in analyzing the behavior of spins in magnets," added Andriy Nevidomskyy, associate professor of physics and astronomy at Rice who conducted theoretical analysis of the acquired data. "It is very difficult, however, to come up with an unambiguous 'smoking gun' signature that would prove the material harbors a quantum spin liquid."

Indeed, a 2022 study by Nevidomskyy showed that narrowing the theoretical model to dependably describe the experiment is far from easy, requiring numerically sleuthing out the model parameters and fitting it to multiple experiments.

Spinons and fractionalization

In quantum mechanics, electrons possess a property called spin, which behaves like a miniature bar magnet. When many electrons interact, their spins usually align or anti-align (aligning in an opposite direction). However, the arrangement of certain crystal structures such as pyrochlores can disrupt either arrangement. This phenomenon, called "magnetic frustration," prevents spins from stabilizing into a conventional order, creating conditions where quantum mechanics can manifest in extraordinary ways, including the emergence of quantum spin liquids.

"Despite their name, quantum spin liquids exist in solid materials," said Nevidomskyy, who has studied the quantum theory of frustrated magnets for years.

Nevidomskyy explained that the geometric frustration in a quantum spin liquid is so severe that the electrons instead form a quantum mechanical superposition that results in fluidlike correlations between electron spins as if the spins are immersed in a liquid.

"What's more, the elementary excitations are not an individual spin flipping its direction from up to down or vice versa," Nevidomskyy said. "Instead, they are these bizarre, delocalized objects that carry half of one spin degree of freedom; we call them spinons. This phenomenon, when a single spin flip sort of splits into two halves, is called fractionalization."

The concept of fractionalization and understanding how the resulting fractional particles interact with one another was key to the research performed by this experiment-theory collaboration. The spinons can be thought of as having a magnetic charge, and the interaction between two such particles is akin to electrically charged electrons repelling each other.

"At a quantum level, the electrons interact with one another by emitting and reabsorbing quanta of light known as photons. Similarly, in a quantum spin liquid, the interaction between spinons is described in terms of exchanging lightlike quanta," said Nevidomskyy.

This analogy connects the study of quantum spin liquids with quantum electrodynamics (QED), the theory that describes how electrons interact through the exchange of photons and forms the foundation of the Standard Model of particle physics. Similarly, the theory of quantum pyrochlore magnets describes spinons as interacting via emergent "photons." However, unlike QED in our universe, where light travels at a constant speed, the emergent "light" in these magnets is much slower - about 100 times slower than the speed of spinons. This stark difference leads to fascinating phenomena such as Cherenkov radiation and an increased likelihood of particle-antiparticle pair production. When combined with complementary research from a group of physicists at the University of Toronto, these findings offered unambiguous evidence for QED-like interactions in the experimental data.

"It is very exciting to see the difficult experiment and dedicated effort of theorists result in such a conclusion," said Sibille.

Future applications

The study provides some of the clearest experimental evidence yet for quantum spin liquid states and their fractionalized excitations. It confirms that materials like cerium stannate can host these exotic phases of matter, which are not only fascinating for fundamental physics but could also have implications for quantum technologies like quantum computing. The results also suggest that we might be able to tune these materials to explore different quantum phenomena such as the existence of dual particles, opening doors to future research.

Dual particles, known as visons, are unlike spinons in that they carry an electric rather than magnetic charge. They resemble the theoretical magnetic monopoles first proposed nearly a century ago by quantum mechanics pioneer Paul Dirac, who predicted their quantization. Although magnetic monopoles have never been observed and are considered highly unlikely by high-energy theorists, the idea remains a captivating aspect of modern physics.

"After this discovery, it is all the more exciting to search for evidence of monopolelike particles in a toy universe formed out of electron spins in a piece of material," said Nevidomskyy.

Research Report:Evidence for fractional matter coupled to an emergent gauge field in a quantum spin ice

Related Links
Rice University
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
A new biodegradable material to replace certain microplastics
Boston MA (SPX) Dec 08, 2024
Microplastics are an environmental hazard found nearly everywhere on Earth, released by the breakdown of tires, clothing, and plastic packaging. Another significant source of microplastics is tiny beads that are added to some cleansers, cosmetics, and other beauty products. In an effort to cut off some of these microplastics at their source, MIT researchers have developed a class of biodegradable materials that could replace the plastic beads now used in beauty products. These polymers break down ... read more

TECH SPACE
Transforming education with virtual reality and artificial intelligence

Secretive game developer codes hit 'Balatro' in Canadian prairie province

New type of quasiparticle discovered in magnetic materials

Stretchable, flexible, recyclable. This plastic is fantastic

TECH SPACE
EU, ESA sign contracts to build communication satellite constellation

Pentagon collaborates with Movius on secure communication solutions

Viasat secures $568M contract to enhance C5ISR capabilities for US Defense

Researchers develop mobile all-light network for seamless air land and underwater connectivity

TECH SPACE
TECH SPACE
GPS alternative for drone navigation leverages celestial data

Deciphering city navigation AI advances GNSS error detection

China advances next-generation BeiDou satellite navigation system

Space Systems Command and U.S. Navy achieve major MGUE program milestone

TECH SPACE
Airbus US Space and Defense partners with Aerostar to advance stratospheric ISR technologies

Atmospheric Probe Shows Promise in Test Flight

Uncrewed aircraft systems traffic management expands beyond line of sight

UK, Italy, Japan to develop next-generation fighter jet

TECH SPACE
US confirms billions in chips funds to Samsung, Texas Instruments

MIT engineers grow "high-rise" 3D chips

Rice team advances quantum simulation for electron transfer understanding

SK Hynix to get $458 mn funding for US chip facilities

TECH SPACE
ICEYE secures $65M funding extension reaching $158M total for 2024 investments

Climate change made Cyclone Chido stronger: scientists

SatVu secures ESA funding for high-resolution thermal imaging project in energy sector

NASA studies crops, forest response to changing rainfall patterns

TECH SPACE
Air pollution in India tied to significant mortality rates

Japan inspects US air base over chemical spill

Somalia struggles to rid itself of plastic despite ban

Russian beach town declares emergency over oil spill

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.