Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Researchers simulate behavior of 'active matter'
by Staff Writers
Providence RI (SPX) Jun 10, 2015


Computer models show how small, spinning particles suspended in a fluid can form a variety of macro-scale structures at different concentrations. (Concentrations increase left to right.) The vertical axis charts kinetic energy, which declines sharply at high concentrations. Image courtesy Brown University. For a larger version of this image please go here.

From flocks of starlings to schools of fish, nature is full of intricate dynamics that emerge from the collective behavior of individuals. In recent years, interest has grown in trying to capture similar dynamics to make self-assembling materials from so-called "active matter."

Brown University researchers Kyongmin Yeo, Enkeleida Lushi, and Petia Vlahovska have shed new light on a particular class of active matter called active colloids - collections of tiny moving particles suspended in fluid. Using numerical models and computer simulations, the researchers show how spinning particles, pushed about by the fluid flows created as each particle spins, can arrange themselves into an array of emergent macro-scale patterns.

The research, published recently in Physical Review Letters, could help engineers to understand the dynamics of these systems and design new materials using rotating colloidal particles.

The study of active colloidal rotors is relatively new. In the last few years, several experimental groups have shown that individual particles in fluid - when coaxed to spin by magnetic or electric fields - can form interesting collective structures. For example, one group recently showed that millimeter-scale wires can assemble in this way from ferromagnetic micro-particles.

The researchers at Brown aimed to use computational methods to try to better understand just what mechanisms are behind these emergent patterns. For this particular study, the researchers were looking specifically at how fluid flows can impact such systems.

"The problem with complex systems like electromagnetically driven active colloids is you don't know which dynamics are coming from which interactions," said Lushi, a postdoctoral researcher in Brown's School of Engineering.

"So we wanted to step back and look just at what the fluid does to the pattern formation, since the fluid environment is always present in these systems. Then in the future we can scale up and combine that with other interactions such as electric or magnetic and compare with experiments."

Lushi and her colleagues simulated a system in which half the particles spin clockwise and the other half spin counter-clockwise. "As each particle rotates, it creates a disturbance in the fluid and that affects the neighbors," Lushi said. "The particles interact through the flow disturbances they create and also by direct collisions."

The simulations showed that at low particle concentrations, the fluid pushes the particles chaotically, in no discernible pattern. But as the particle concentrations increase, patterns begin to emerge. At a certain point, the particles begin to segregate according to spin direction - forming distinct "lanes" of particles with the same spin.

As the concentration increases, small swirling vortices of same-spin particles form. At still higher concentrations, a large hurricane-like structure of same-spin particles forms. But if the concentration is too high the particles just jam into crystals and cannot segregate anymore.

This is the first simulation of its kind that has tried to account for effects of fluid flows in populations of rotating colloids, the researchers say. The results underscore just how important that fluid flow can be in these systems.

"Even just that simple interaction - rotation creating disturbances in the fluid - gives us all this complex behavior," said Vlahovska, associate professor of engineering at Brown and the paper's senior author. "At the micron scale, you can't ignore the fluid. It's a force that has to be reckoned with."

Ultimately, the researchers hope that simulations like this one could help scientists to harness emergent behavior to make new materials.

"It is expensive to do experiments in the lab, hoping to discover just by serendipity some new behavior or new material," Lushi said. "Computer simulations are much cheaper to perform, and can give experimentalists a useful set of parameters for what kinds of interesting dynamics could be seen in the system."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Brown University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Magnetic nanoparticles could offer alternative to rare Earth magnets
Richmond VA (SPX) Jun 10, 2015
A team of scientists at Virginia Commonwealth University has synthesized a powerful new magnetic material that could reduce the dependence of the United States and other nations on rare earth elements produced by China. "The discovery opens the pathway to systematically improving the new material to outperform the current permanent magnets," said Shiv Khanna, Ph.D., a commonwealth professo ... read more


TECH SPACE
How natural channel proteins move in artificial membranes

Researchers simulate behavior of 'active matter'

An inexpensive rival to graphene aerogels

Magnetic nanoparticles could offer alternative to rare Earth magnets

TECH SPACE
Harris providing Australia with support for radio system

US Navy accepts third LMC-Built MUOS comsat

Continued Momentum for Commercial Satellite Acquisition Reform

IOC status for upgraded French AWACS aircraft

TECH SPACE
SpaceX achieves pad abort milestone approval for Commercial Crew

MSG-4 and S1 C4 make initial contact with Ariane 5 launcher hardware

Angara to launch first manned rocket from Vostochny in 2023

Airbus developing reusable space rocket launcher

TECH SPACE
Russia, China Plan to Equip Commercial Trucks With Glonass, BeiDou

GLONASS to Go on Stream in 2015

Satellites make a load of difference to bridge safety

Advanced Navigation Releases Interface and Logging Unit

TECH SPACE
Kuwait wants to buy Airbus helicopters for air force

Northrop Grumman unveils first NATO ISR aircraft

U.S. orders components for 94 F-35s

The rise and fall of giant balloons on the edge of space

TECH SPACE
Exploiting the extraordinary properties of a new semiconductor

Futuristic components on silicon chips, fabricated successfully

New chip makes testing for antibiotic-resistant bacteria faster, easier

A chip placed under the skin for more precise medicine

TECH SPACE
NASA Releases Detailed Global Climate Change Projections

Apple dispatches fleet of cars to get map service data

Yahoo folding up map site as priorities shift

Egypt Mulls Buying Russian Satellite Images After EgyptSat 2 Loss

TECH SPACE
Spain's crisis has taken environmental toll: Greenpeace

Researchers say anti-pollution rules have uncertain effects

Greenpeace India vows to win 'malicious' funds battle

Wetlands continue to reduce nitrates




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.