Space Industry and Business News
PHYSICS NEWS
Researchers find gravitational lensing has significant effect on cosmic birefringence
Cosmic Microwave Background (CMB) polarized light subjected to gravitational lensing effects, in addition to cosmic birefringence. On the far left, the white lines show the polarization pattern of the CMB light generated in the early universe. These rotate due to cosmic birefringence, resulting in the currently observed CMB depicted by the black lines on the right side of the image. However, the path of light is bent by the gravitational distortion of space-time created by the large-scale structure in the middle, and so the white lines showing the polarization pattern on the right side of the image shows what is observed.
Researchers find gravitational lensing has significant effect on cosmic birefringence
by Staff Writers
Tokyo, Japan (SPX) Nov 03, 2023

Future missions will be able to find signatures of violating the parity-symmetry in the cosmic microwave background polarization more accurately after a pair of researchers has managed to take into account the gravitational lensing effect, reports a new study in Physical Review D, selected as an Editors' Suggestion.

How far does the universe extend? When and how did the universe begin? Cosmology has made progress in addressing these questions by providing observational evidence for theoretical models of the universe based on fundamental physics. The Standard Model of Cosmology is widely accepted by researchers today. However, it still cannot explain fundamental questions in cosmology, including dark matter and dark energy.

In 2020, an interesting new phenomenon called cosmic birefringence was reported from the cosmic microwave background (CMB) polarization data. Polarization describes light waves oscillating perpendicularly to the direction it is traveling. In general, the direction of polarization plane remains constant, but can be rotated under special circumstances. A reanalysis of the CMB data showed the polarization plane of the CMB light may have slightly rotated between the time it was emitted in the early universe and today. This phenomenon violates the parity symmetry and is called the cosmic birefringence.

Because cosmic birefringence is challenging to explain with the well-known physical laws, there is a strong possibility that yet to be discovered physics, such as the axionlike particles (ALPs), lies behind it. A discovery of cosmic birefringence could lead the way to revealing the nature of dark matter and dark energy, and so future missions are focused on making more precise observations of the CMB.

To do this, it is important to improve the accuracy of current theoretical calculations, but these calculations so far have not been sufficiently accurate because they do not take gravitational lensing into account.

A new study by a pair of researchers, led by The University of Tokyo Department of Physics and Research Center for Early Universe doctoral student Fumihiro Naokawa, and Center for Data-Driven Discovery and Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) Project Assistant Professor Toshiya Namikawa, established a theoretical calculation of cosmic birefringence that incorporates gravitational lensing effects, and worked on the development of a numerical code for cosmic birefringence that includes gravitational lensing effects, which will be indispensable for future analyses.

First, Naokawa and Namikawa derived an analytical equation describing how the gravitational lensing effect changes the cosmic birefringence signal. Based on the equation, the researchers implemented a new program to an existing code to compute the gravitational lensing correction, and then looked at the difference in signals with and without the gravitational lensing correction.

As a result, the researchers found that if gravitational lensing is ignored, the observed cosmic birefringence signal cannot be fitted well by the theoretical prediction, which would statistically reject the true theory.

In addition, the pair created simulated observational data that will be obtained in future observations to see the effect of gravitational lensing in the search for ALPs. They found that if the gravitational lensing effect is not considered, there would be statistically significant systematic biases in the model parameters of ALPs estimated from the observed data, which would not accurately reflect the ALPs model.

The gravitational lensing correction tool developed in this study is already being used in observational studies today, and Naokawa and Namikawa will continue to use it to analyze data for future missions.

Research Report:Gravitational lensing effect on cosmic birefringence"

Related Links
Kavli Institute for the Physics and Mathematics of the Universe
The Physics of Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
PHYSICS NEWS
LIGO surpasses the quantum limit
Boston MA (SPX) Oct 24, 2023
In 2015, the Laser Interferometer Gravitational-Wave Observatory, or LIGO, made history when it made the first direct detection of gravitational waves, or ripples in space and time, produced by a pair of colliding black holes. Since then, the U.S. National Science Foundation (NSF)-funded LIGO and its sister detector in Europe, Virgo, have detected gravitational waves from dozens of mergers between black holes as well as from collisions between a related class of stellar remnants called neutron stars. At ... read more

PHYSICS NEWS
ESA hones 3D Printed electromagnetic coils for spaceflight

World-first Zero Debris Charter goes live

Three-Body Tethered Satellite System Deploys Successfully in Simulations

Planet Labs advances satellite communication with NASA CSP ground tests

PHYSICS NEWS
Lockheed Martin Showcases Hybrid 5G-Tactical Network in Multi-Domain Field Test

SDA Awards Northrop Grumman $732 Million Satellite Contract

University of Kansas wins $5M NSF grant to help secure 5G for U.S. Military

HawkEye 360 secures $12M contract from NIWC Pacific for Maritime Awareness

PHYSICS NEWS
PHYSICS NEWS
PASSport project testing

Zephr raises $3.5M to bring next-gen GPS to major industries

Satnav test on remote island lab

Trimble and Kyivstar to provide GNSS correction services in Ukraine

PHYSICS NEWS
Advancing Technology for Aeronautics

AFRL announces Airlift Challenge, AI-Based Planning Competition

China blasts 'malicious' Canada air patrol after latest intercept

First F-16 jets sent to Romania to train Ukrainian pilots: Dutch

PHYSICS NEWS
TU Delft researchers discover new ultra strong material for microchip sensors

A superatomic semiconductor sets a speed record

Chip maker Intel beats earnings expectations as it pursues rivals

Taiwan's TSMC reports profit drop in third quarter

PHYSICS NEWS
China releases methane control plan with no reduction target

2023 Ozone Hole Ranks 16th Largest, NASA and NOAA Researchers Find

TelePIX and Thrusters Unlimited to sell Geo-Info solutions across Latin America and Caribbean

China places multipurpose satellite into space

PHYSICS NEWS
Green 'Marianne' brings climate crisis to French letterboxes

Fans forgo facemasks as India's toxic smog clouds World Cup

Schools shut as toxic smog engulfs India's capital

Public outcry over construction near Vietnam's Ha Long Bay

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.