Subscribe free to our newsletters via your
. Space Industry and Business News .




TIME AND SPACE
Researchers discover 'swing-dancing' pairs of electrons
by Staff Writers
Pittsburgh PA (SPX) May 25, 2015


Electron pair generation gap. Bottom row: representation of electrons in a superconducting state. The couples dance synchronously and without energy loss. Top row: electrons dancing completely independently, the non-superconducting state. Middle row: electrons "swing dance" as pairs but do not form a superconducting state.

A research team led by the University of Pittsburgh's Jeremy Levy has discovered electrons that can "swing dance." This unique electronic behavior can potentially lead to new families of quantum devices.

Superconductors, materials that permit electrical current to flow without energy loss, form the basis for magnetic resonance imaging devices as well as emerging technologies such as quantum computers. At the heart of all superconductors is the bunching of electrons into pairs.

Levy, Distinguished Professor of Physics and Pittsburgh Quantum Institute director, has discovered a long-postulated phase in which electrons form pairs but do not reach a superconducting state. The discovery provides fundamental new insights into a mechanism that could one day be used to design a material that is superconducting at room temperature.

Such a breakthrough would radically transform an array of technologies such as high-speed trains, energy-efficient power transmission, and computers that operate with negligible power requirements. The work, done in collaboration with researchers from the University of Wisconsin-Madison and the U.S. Naval Research Laboratory, will be published May 14 in the journal Nature.

One way to understand this novel state is to extend an analogy first articulated by J. Robert Schrieffer, who shared the 1972 Nobel Prize in Physics for the theory of superconductivity. In a superconductor, the motion of paired electrons is highly coordinated, similar to waltzing couples on a dance floor.

In the "normal" or non-superconducting state, electrons move independently, bumping into one another occasionally and dissipating energy. What the new research has identified is an in-between state where the electrons form pairs, but each pair moves independently. One may regard the electron pairs as "swing dancing" where dancing pairs hold hands but do not move in any synchronized fashion.

The first theory to describe how electrons pair without forming a superconducting state was published by David M. Eagles in 1969. Lead author and research assistant professor in the Levy lab, Guanglei Cheng, described how the theory was proven right: "The breakthrough comes from the technological advancement to fabricate superconducting single-electron transistors at an oxide interface--a technology that allows us to count electrons and pairs one by one. And this is just the beginning. We now have a novel platform to study the fascinating electron-electron correlations at nanoscale dimensions."

Levy and Cheng also worked with a research team led by Chang-Beom Eom at the University of Wisconsin-Madison and employed theoretical contributions from C. Stephen Hellberg at the U.S. Naval Research Laboratory. The research was supported by grants from the Air Force Office of Scientific Research and the National Science Foundation.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Pittsburgh
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Physicists observe real-time restructuring of electron cloud in attoseconds
Moscow, Russia (SPX) May 25, 2015
The recombination of electron shells in molecules, taking just a few dozen attoseconds (a billionth of a billionth of a second), can now be viewed "live," thanks to a new method developed by MIPT researchers and their colleagues from Denmark, Japan and Switzerland. An article detailing the results of their study has been published in the journal Nature Communications. In recent years, scie ... read more


TIME AND SPACE
Defects can 'Hulk-up' materials

Seashell strength inspires stress tests

Patent for Navy small space debris tracker

Nanomaterials inspired by bird feathers turn light into color

TIME AND SPACE
IOC status for upgraded French AWACS aircraft

Russian Radio-Electronic Forces to Conduct Drills in Armenian Mountains

Thales granted multiple-award IDIQ contract for Army radios

German ships receiving Indra's satellite communications terminals

TIME AND SPACE
Initial Ariane 5 assembly completed for July launch of dual payloads

Mexico Wanted to Cancel Satellite Launch on Russian Carrier Rocket

SpaceX cargo ship returns to Earth in ocean splashdown

Commission on Proton Rocket Failure to Finish Investigation by End of May

TIME AND SPACE
Satellites make a load of difference to bridge safety

Advanced Navigation Releases Interface and Logging Unit

Raytheon delivers hardware for next-gen USAF GPS system

Russia, China Agree on Joint Exploitation of Glonass Navigation Systems

TIME AND SPACE
New F-35 work for Kongsberg Defense

Australia touts industry's contribution to F-35 program

USMC F-35Bs undergoing shipboard operational tests

Airline chief casts doubt on plane hacking claim

TIME AND SPACE
New options for spintronic devices

Cheap radio frequency antenna printed with graphene ink

Mission possible: This device will self-destruct when heated

The next step in DNA computing: GPS mapping

TIME AND SPACE
NASA Soil Moisture Mission Begins Science Operations

In the Field: SMAP Gathers Soil Data in Australia

Mischief makers prompt Google to halt public map edits

Space technology identifies vulnerable regions in West Africa

TIME AND SPACE
Greenpeace India vows to win 'malicious' funds battle

Wetlands continue to reduce nitrates

Bacteria the newest tool in detecting environmental damage

Mining pollution alters fish genetics in southwest England




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.