Space Industry and Business News  
ENERGY TECH
Researchers discover more efficient way to split water, produce hydrogen
by Staff Writers
Houston TX (SPX) Oct 04, 2016


Illustration shows procedures for growing ternary molybdenum sulfoselenide on the porous foam; b-c, images showing surface roughness of the nickel diselenide foam grown at 600 degrees C; d-e, morphologies of ternary molybdenum sulfoselenide particles on porous foam, grown at 500 degrees C. Image courtesy University of Houston. For a larger version of this image please go here.

Hydrogen is often considered a fuel for the future, in the form of fuel cells to power electric motors or burned in internal combustion engines. But finding a practical, inexpensive and nontoxic way to produce large amounts of hydrogen gas - especially by splitting water into its component parts, hydrogen and oxygen - has been a challenge.

A team of researchers from the University of Houston and the California Institute of Technology has reported a more efficient catalyst, using molybdenum sulfoselenide particles on three-dimensional porous nickel diselenide foam to increase catalytic activity.

The foam, made using commercially available nickel foam, significantly improved catalytic performance because it exposed more edge sites, where catalytic activity is higher than it is on flat surfaces, said Zhifeng Ren, MD Anderson Professor of physics at UH.

Ren is lead author of a paper in Nature Communications describing the discovery. Other researchers involved include Haiqing Zhou, Fang Yu, Jingying Sun, Ran He, Shuo Chen, Jiming Bao and Zhuan Zhu, all of UH, and Yufeng Huang, Robert J. Nielsen and William A. Goddard III of the California Institute of Technology.

"With the massive consumption of fossil fuels and its detrimental impact on the environment, methods of generating clean power are urgent," the researchers wrote. "Hydrogen is an ideal carrier for renewable energy; however, hydrogen generation is inefficient because of the lack of robust catalysts that are substantially cheaper than platinum."

Platinum catalysts have the highest efficiency rate for hydrogen evolution, said Ren, who also is a principal investigator at the Texas Center for Superconductivity. But platinum is rare, difficult to extract and too expensive for practical use, he said, and researchers continue to seek less expensive ways to split water into its component parts.

Currently, most hydrogen is produced through steam methane reforming and coal gasification; those methods raise the fuel's carbon footprint despite the fact that it burns cleanly.

Molybdenum sulfoselenide and similar layered compounds have shown promise as catalysts, but so far no one has boosted their performance to viable levels in bulk form. The researchers say most active catalysis on those layered compounds, known as layered transition-metal dichalcogenides, or LTMDs, takes place at the edges, making the idea of a substrate with a large number of exposed edges more desirable. Also, they wrote, "arranging two different materials into hybrids might lead to synergistic effects that utilize the best properties of each component."

Their hybrid catalyst is composed of molybdenum sulfoselenide particles with vertically aligned layers on a 3-D porous conductive nickel diselenide scaffold.

Testing determined that the hybrid catalyst required 69 millivolts from an external energy source to achieve a current density of 10 milliamps per square centimeter, which the researchers said is much better than many previously reported tests. In this case, the current "splits" the water, converting it to hydrogen at the cathode. Achieving the necessary current density with lower voltage improves energy conversion efficiency and reduces preparation costs.

A platinum catalyst required 32 millivolts in the testing, but Ren said ongoing testing has reduced the hybrid catalyst requirements to about 40 millivolts, close to the platinum requirements.

Equally important, he said, was the ability to increase current output at a faster rate than the increase in required energy input. The catalyst remained stable after 1,000 cycles at a constant current.

The work will continue as researchers focus on reducing required voltage.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Houston
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Closing in on high-temperature superconductivity
University Park PA (SPX) Sep 28, 2016
The quest to know the mysterious recipe for high-temperature superconductivity, which could enable revolutionary advances in technologies that make or use electricity, just took a big leap forward thanks to new research by an international team of experimental and theoretical physicists. The research paper appears in the journal Science on Sept. 16, 2016. The research is focused on reveali ... read more


ENERGY TECH
Use of 'large open-ended pipe piles' could lead to lower-cost bridge construction

Yes, the rumors are true! Brandeis really has a space chair

Levitating nanoparticle improves torque sensing in quest for quantum theory fundamentals

Apple teams with Deloitte to push deeper into work

ENERGY TECH
TeleCommunications Systems continues USMC satellite services

SES unveils new tactical surveillance and communications solution

Newest DARPA Challenge: 'Shift Paradigm' With Robot Radio

SES Government solutions to provide the US with a high performance network

ENERGY TECH
Arianespace to launch satellites for Australia and India with Ariane 5

Launch of Atlas V Rocket With WorldView-4 Satellite Postponed Till October

Rocket agreement marks countdown to New Zealand's first space launch

Parallel launch preparations put Ariane 5 on track for next launch

ENERGY TECH
SMC exercises contract options to procure two additional GPS III satellites

Lockheed gets $395 million GPS III Space Vehicle contract modification

2 SOPS bids farewell to miracle satellite

China issues development plan for geoinformation industry

ENERGY TECH
EU 'cautiously optimistic' on global pact to curb aviation emissions

NASA launches back-to-back scientific balloons

Bell contracted to supply helicopters to Uganda, Kenya

Japan wins State Dept. approval for KC-46A acquisition

ENERGY TECH
Integrating graphene, reduced graphene oxide onto silicon chips at room temperature

Semiconducting inorganic double helix

One-pot synthesis towards sulfur-based organic semiconductors

Seeing energized light-active molecules proves quick work for Argonne scientists

ENERGY TECH
Vega to launch ESA's wind mission

Van Allen probes spot electron rainfall in atmosphere

METimage: New Weather Data Every 1.7 seconds

Rezatec to develop the use of satellite data in evaluating plant health in UK

ENERGY TECH
Ocean records show leaded fuel emissions on the decline

Over 90% of world breathing bad air: WHO

China ship owners pay up for Australia reef disaster

Southeat Asian haze crisis killed over 100,000: study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.