Subscribe free to our newsletters via your
. Space Industry and Business News .




TIME AND SPACE
Researchers discern the shapes of high-order Brownian motions
by Staff Writers
Cleveland OH (SPX) Nov 17, 2014


This image spatially maps and visualizes the shapes of multimode Brownian motions. The top of the image is a false-colored scanning electron micrographs of a silicon carbide (SiC) microdisk supported by a central pedestal made of 500nm-thick silicon oxide. The bottom image is a scanned map of vibrations of the microdisk due to a high-order mode Brownian motion. Image courtesy Philip Feng.

For the first time, scientists have vividly mapped the shapes and textures of high-order modes of Brownian motions--in this case, the collective macroscopic movement of molecules in microdisk resonators--researchers at Case Western Reserve University report. To do this, they used a record-setting scanning optical interferometry technique, described in a study published in the journal Nature Communications.

The new technology holds promise for multimodal sensing and signal processing, and to develop optical coding for computing and other information-processing functions by exploiting the spatially resolved multimode Brownian resonances and their splitting pairs of modes.

"What we found agrees with the expected Brownian motions in high-order modes," said Philip Feng, assistant professor of electrical engineering and computer science at Case Western Reserve and senior author of the study.

"But it has been pretty amazing and exhilarating to directly visualize these modes down to the fundamental limit of intrinsic Brownian motions."

In his lab at Case School of Engineering, Feng worked closely with research associate Max Zenghui Wang and PhD student Jaesung Lee on the study.

Interferometry uses the interference of light waves reflected off a surface to measure distances, a technique invented by Case School of Applied Science physicist Albert A. Michelson (who won the Nobel prize in science in 1907).

Michelson and Western Reserve University chemist Edward Morley used the instrument to famously disprove that light traveled through "luminous ether" in 1887, setting the groundwork for Albert Einstein's theory of relativity.

The technology has evolved since then. The keys to Feng's new interferometry technique are focusing a tighter-than-standard laser spot on the surface of novel silicon carbide microdisks.

The microdisks, which sit atop pedestals of silicon oxide like cymbals on stands, are extremely sensitive to the smallest fluctuations arising from Brownian motions, even at thermodynamic equilibrium. Hence, they exhibit very small oscillations without external driving forces. These oscillations include fundamental and higher modes, called thermomechanical resonances.

Some of the light from the laser reflects back to a sensor after striking the top surface of the silicon dioxide film. And some of the light is refracted through the film and reflected back on a different path, causing interference in the light waves.

The narrow laser spot scans the disk surface and measures movement, or displacement, of the disk with a sensitivity of about 7 femtometers per square-root of a hertz at room temperature, which researchers believe is a record for interferometric systems. To put that in perspective, the width of a hair is about 40 microns, and a femtometer is 100 million times smaller than a micron.

Although higher frequency modes have small motion amplitudes, the technology enabled the group to spatially map and clearly visualize the first through ninth Brownian modes in the high frequency band, ranging from 5.78 to 26.41 megahertz.

In addition to detecting the shapes and textures of Brownian motions, multimode mapping identified subtle structural imperfections and defects, which are ubiquitous but otherwise invisible, or can't be quantified most of the time. This capability may be useful for probing the dynamics and propagation of defects and defect arrays in nanodevices, as well as for future engineering of controllable defects to manipulate information in silicon carbide nanostructures

The high sensitivity and spatial resolution also enabled them to identify mode splitting, crossing and degeneracy, spatial asymmetry and other effects that may be used to encode information with increasing complexity. The researchers are continuing to explore the capabilities of the technology.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Case Western Reserve University
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Spiral laser beam creates quantum whirlpool
Canberra, Australia (SPX) Nov 17, 2014
Physicists at ANU have engineered a spiral laser beam and used it to create a whirlpool of hybrid light-matter particles called polaritons. "Creating circulating currents of polaritons - vortices - and controlling them has been a long-standing challenge," said leader of the team, theoretician Dr Elena Ostrovskaya, from the Research School of Physics and Engineering . "We can now create a c ... read more


TIME AND SPACE
New form of crystalline order good for thermoelectric uses

Paris pop-up store immortalises shoppers with 3D printed figurine

Eurofighter unveils 1.0-billion-euro radar upgrade

Supercomputing progress slows

TIME AND SPACE
Harris Corporation supplying Falcon III radios to Canadian military

GenDyn Canada contracted to connect military to WGS system

Northrop Grumman continues Joint STARS sustainment services

Harris Corporation opens engineering support facility

TIME AND SPACE
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Time-lapse video shows Orion's move to Cape Canaveral launch pad

SpaceX chief Musk confirms Internet satellite plan

Orbital recommits to NASA Commercial program and Antares

TIME AND SPACE
Russia to place global navigation stations in China

Telit Introduces Jupiter SL871-S GPS Module

Galileo satellite set for new orbit

KVH Receives Order for Military Navigation Systems

TIME AND SPACE
Royal Australian Air Force getting deployable air traffic management systems

Northrop Grumman updating aircraft targeting system

U.S. contracts CPI Aerostructures for F-16 wing components

US military looks for the elusive mothership

TIME AND SPACE
Giving LEDs a cozy, warm glow

Magic tricks created using artificial intelligence for the first time

Researchers create and control spin waves for enhanced data processing

New technique to help produce next-generation photonic chips

TIME AND SPACE
NASA Computer Model Provides a New Portrait of Carbon Dioxide

NASA's New Wind Watcher Ready for Weather Forecasters

GOES-S Satellite EXIS Instrument Passes Final Review

NASA Lining up ICESat-2's Laser-catching Telescope

TIME AND SPACE
Study: Six toxic flame retardants found in humans

India sending 'chilling message' on environment: Greenpeace

Sickness stalks India village with toxic water

China's Xi says he checks pollution first thing every day




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.