Space Industry and Business News  
INTERN DAILY
Researchers develop novel wound-healing technology
by Staff Writers
Pullman WA (SPX) Nov 30, 2016


Washington State University researchers have successfully used a mild electric current to take on and beat drug-resistant bacterial infections, a technology that may eventually be used to treat chronic wound infections. Image courtesy Washington State University. For a larger version of this image please go here.

A WSU research team has successfully used a mild electric current to take on and beat drug-resistant bacterial infections, a technology that may eventually be used to treat chronic wound infections. The researchers report on their work in the online edition of npj Biofilms and Microbiomes.

Led by Haluk Beyenal, Paul Hohenschuh Distinguished Professor in the Gene and Linda Voiland School of Chemical Engineering and Bioengineering, the research team used an antibiotic in combination with the electric current to kill all of the highly persistent Pseudomonas aeruginosa PAO1 bacteria in their samples. The bacteria is responsible for chronic and serious infections in people with lung diseases, such as cystic fibrosis, and in chronic wounds. It also often causes pneumonia for people who are on ventilators and infections in burn victims.

"I didn't believe it. Killing most of the persister cells was unexpected," said Beyenal, when he first saw the results. "Then we replicated it many, many times." Bacterial resistance is a growing problem around the world. While antibiotics were a miracle drug of the 20th century, their widespread use has led to drug-resistant strains. In the U.S. at least two million infections and 23,000 deaths are now attributable to antibiotic-resistant bacteria each year, according to the Centers for Disease Control.

When doctors use antibiotics to treat a bacterial infection, many of the bacteria die. Bacteria that form a slime layer (called a biofilm), however, are more difficult to kill because antibiotics only partially penetrate this protective layer. Subpopulations of "persister" cells survive treatment and are able to grow and multiply, resulting in chronic infections.

In the new study, the researchers used an "e-scaffold," a sort of electronic band-aid made out of conductive carbon fabric, along with an antibiotic to specifically tackle these persister cells. The e-scaffold creates an electrical current that produces a low and constant concentration of hydrogen peroxide, an effective disinfectant, at the e-scaffold surface.

The hydrogen peroxide disrupts the biofilm matrix, damages the bacterial cell walls and DNA, allowing better antibiotic penetration and efficacy against the bacteria. "It turns out the hydrogen peroxide is really hard on biofilms,'' said Doug Call, a professor in the Paul Allen School of Global Animal Health and co-author on the paper.

Researchers have tried electrical stimulation as a method to kill bacteria for more than a century but with only mixed results. Beyenal's team determined the conditions necessary for the electrochemical reaction to produce hydrogen peroxide. The current has to be carefully controlled, however, to assure the correct reaction at an exact rate. Their method also does not damage surrounding tissue, and the bacteria are unable to develop resistance to such an electrochemical treatment.

"We pushed past the observation and got to the mechanism,'' said Call. "If you can explain why it works, then you can move forward, describe the limitations, and hopefully augment the effect."

The researchers have filed a patent application and are working to commercialize the process. Already several companies have contacted WSU to discuss commercialization. They also hope to begin conducting clinical tests.

Similar to the way that penicillin was discovered by accident, the research to develop the e-scaffold actually came out of Beyenal's group's failed attempt to improve fuel cells, he said. When the researchers figured out they could only produce a small amount of electric current for their fuel cell cathode, they decided to see if they could use the process for a different purpose.

"As engineers, we are always trying to find solutions to a problem, so we decided to use bad cathodes to control biofilm growth, and it worked. Our inspiration came from the fundamental work to understand its mechanism" he said.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Washington State University
Hospital and Medical News at InternDaily.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
INTERN DAILY
Death toll rises in Australia 'thunderstorm asthma'
Sydney (AFP) Nov 27, 2016
The death toll from Australia's "thunderstorm asthma" episode has risen to six and three others are in critical condition, authorities said Sunday, as they assessed the fallout from the unprecedented event. Four victims - ranging from the ages of 18 to 35 - were last week linked to the unusual weather phenomenon, where a thunderstorm coincided with a high pollen count and sent more than 8, ... read more


INTERN DAILY
Inside tiny tubes, water turns solid when it should be boiling

Model could shatter a mystery of glass

More reliable way to produce single photons for quantum information imprinting

For platinum catalysts, tiny squeeze gives big boost in performance

INTERN DAILY
Intelsat General to provide satellite services to RiteNet for US Army network

NSA gives Type1 certification to Harris radio

Upgraded telecommunications network for Marines

Unfurlable mesh reflectors deploy on 5th MUOS satellite

INTERN DAILY
Russia to face strong competition from China in space launch market

Vega And Gokturk-1A are present for next Arianespace lightweight mission

Antares Rides Again

Four Galileo satellites are "topped off" for Arianespace's milestone Ariane 5 launch from the Spaceport

INTERN DAILY
Launch of new Galileo navigation quartet

How NASA and John Deere Helped Tractors Drive Themselves

Flying the fantastic four

Russian Space Agency May Launch Up to 4 Glonass Navigation Satellites Next Year

INTERN DAILY
Bolivia may purchase Brazilian Super Tucanos

Airbus delivers final EC135 T2+ helicopters to Australia

Bell-Boeing team receives $267M modification for MV-22 support

Chinese travel site Ctrip buys Skyscanner for $1.7 bn

INTERN DAILY
For wearable electronic devices, NIST shows plastic holes are golden

Making spintronic neurons sing in unison

World's fastest quantum simulator operating at the atomic level

Tracking the flow of quantum information

INTERN DAILY
Researchers targeting mysteries of deep Earth

Early warning from space of homes on the slide

NASA Selects Launch Services for Global Surface Water Survey Mission

NASA launches Advanced Geostationary Weather Satellite for NOAA

INTERN DAILY
New grasses neutralize toxic pollution from bombs, explosives, and munitions

Greenpeace urges microbead ban to protect ocean life

Europe air pollution causes 467,000 early deaths a year: report

Canada pressed to make clean environment a constitutional right









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.