Space Industry and Business News  
TECH SPACE
Researchers determine fundamental limits of invisibility cloaks
by Staff Writers
Austin TX (SPX) Jul 08, 2016


The graph shows the trade-off between how much an object can be made transparent (scattering reduction; vertical axis) and the color span (bandwidth; horizontal axis) over which this phenomenon can be achieved. The red line represents the optimal performance achievable by a passive cloak, dividing the graph in realizable and forbidden regions. No passive invisibility device can attain performance values belonging to the forbidden region. Achieving invisibility becomes more and more challenging for bigger objects (the red line representing the bound moves upward and to the left, as indicated by the arrow). Image courtesy Cockrell School of Engineering. For a larger version of this image please go here.

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have been able to quantify fundamental physical limitations on the performance of cloaking devices, a technology that allows objects to become invisible or undetectable to electromagnetic waves including radio waves, microwaves, infrared and visible light.

The researchers' theory confirms that it is possible to use cloaks to perfectly hide an object for a specific wavelength, but hiding an object from an illumination containing different wavelengths becomes more challenging as the size of the object increases.

Andrea Alu, an electrical and computer engineering professor and a leading researcher in the area of cloaking technology, along with graduate student Francesco Monticone, created a quantitative framework that now establishes boundaries on the bandwidth capabilities of electromagnetic cloaks for objects of different sizes and composition. As a result, researchers can calculate the expected optimal performance of invisibility devices before designing and developing a specific cloak for an object of interest. Alu and Monticone describe their work in the journal Optica.

Cloaks are made from artificial materials, called metamaterials, that have special properties enabling a better control of the incoming wave, and can make an object invisible or transparent. The newly established boundaries apply to cloaks made of passive metamaterials - those that do not draw energy from an external power source.

Understanding the bandwidth and size limitations of cloaking is important to assess the potential of cloaking devices for real-world applications such as communication antennas, biomedical devices and military radars, Alu said. The researchers' framework shows that the performance of a passive cloak is largely determined by the size of the object to be hidden compared with the wavelength of the incoming wave, and it quantifies how, for shorter wavelengths, cloaking gets drastically more difficult.

For example, it is possible to cloak a medium-size antenna from radio waves over relatively broad bandwidths for clearer communications, but it is essentially impossible to cloak large objects, such as a human body or a military tank, from visible light waves, which are much shorter than radio waves.

"We have shown that it will not be possible to drastically suppress the light scattering of a tank or an airplane for visible frequencies with currently available techniques based on passive materials," Monticone said. "But for objects comparable in size to the wavelength that excites them (a typical radio-wave antenna, for example, or the tip of some optical microscopy tools), the derived bounds show that you can do something useful, the restrictions become looser, and we can quantify them."

In addition to providing a practical guide for research on cloaking devices, the researchers believe that the proposed framework can help dispel some of the myths that have been developed around cloaking and its potential to make large objects invisible.

"The question is, 'Can we make a passive cloak that makes human-scale objects invisible?' " Alu said. "It turns out that there are stringent constraints in coating an object with a passive material and making it look as if the object were not there, for an arbitrary incoming wave and observation point."

Now that bandwidth limits on cloaking are available, researchers can focus on developing practical applications with this technology that get close to these limits.

"If we want to go beyond the performance of passive cloaks, there are other options," Monticone said. "Our group and others have been exploring active and nonlinear cloaking techniques, for which these limits do not apply. Alternatively, we can aim for looser forms of invisibility, as in cloaking devices that introduce phase delays as light is transmitted through, camouflaging techniques, or other optical tricks that give the impression of transparency, without actually reducing the overall scattering of light."

Alu's lab is working on the design of active cloaks that use metamaterials plugged to an external energy source to achieve broader transparency bandwidths.

"Even with active cloaks, Einstein's theory of relativity fundamentally limits the ultimate performance for invisibility," Alu said. "Yet, with new concepts and designs, such as active and nonlinear metamaterials, it is possible to move forward in the quest for transparency and invisibility."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Texas at Austin
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
WSU researchers develop shape-changing 'smart' material
Pullman WA (SPX) Jul 03, 2016
Washington State University researchers have developed a unique, multifunctional smart material that can change shape from heat or light and assemble and disassemble itself. They have filed a provisional patent on the work. This is the first time researchers have been able to combine several smart abilities, including shape memory behavior, light-activated movement and self-healing behavio ... read more


TECH SPACE
Winning Students Selected for Future Engineers Star Trek Replicator Challenge

Theoretical climbing rope could brake falls

How water gets its exceptional properties

A drop of water as a model for the interplay of adhesion and stiction

TECH SPACE
MUOS-5 secure communications satellite responding to ground control

How to Improve Enterprise Ground Services for Space

Testing Confirms Intelsat EpicNG Delivers a Whole New Ballgame

MUOS-5 Secure Communications Satellite to launch June 24

TECH SPACE
Russia to Continue Rocket Engine Supplies to US Under Existing Contracts

India launches 20 satellites in single mission

LSU Chemistry Experiment Aboard Historic Suborbital Space Flight

Spaceflight contracts India's PSLV to launch 12 Planet Dove nanosats

TECH SPACE
Raytheon hits next-generation GPS milestone

China promises GPS system that's "reliable, safe and free"

China promotes int'l development of homegrown GPS system

BeiDou GPS system targets global service around 2020

TECH SPACE
China firm declares success in $1.5 bn Swiss offer

First British F-35 completes transatlantic crossing

Hindustan Aeronautics hands over first Tejas jets

Seven killed in Turkey military chopper crash: army

TECH SPACE
New discovery could better predict how semiconductors weather abuse

Researchers develop key power-splitting component for terahertz waves

New, better way to build circuits for world's first useful quantum computers

Oracle told to pay HP billions in chip dispute

TECH SPACE
Sentinel-1 satellites combine radar vision

Canada Launches Maritime Monitoring Satellite

Nepal, India agree to use satellite system for border pillars

DigitalGlobe Awarded Sole-Source Contract to Provide Advanced Analytic Services to the DIA

TECH SPACE
Scientists find bouncing droplets can remove contaminants

Household fuels exceed power plants and cars as source of smog in Beijing

Household fuels a major contributor to Beijing's infamous air pollution

Vietnam says Taiwanese steel mill to pay $500m for pollution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.