Space Industry and Business News  
CARBON WORLDS
Researchers demonstrate tunable wetting and adhesion of graphene
by Staff Writers
Champaign IL (SPX) Jul 11, 2016


Doping-induced tunable wetting of graphene. Image courtesy University of Illinois. For a larger version of this image please go here.

Researchers from the University of Illinois at Urbana-Champaign have demonstrated doping-induced tunable wetting and adhesion of graphene, revealing new and unique opportunities for advanced coating materials and transducers.

"Our study suggests for the first time that the doping-induced modulation of the charge carrier density in graphene influences its wettability and adhesion," explained SungWoo Nam, an assistant professor in the Department of Mechanical Science and Engineering at Illinois. "This work investigates this new doping-induced tunable wetting phenomena which is unique to graphene and potentially other 2D materials in complementary theoretical and experimental investigations."

Graphene, being optically transparent and possessing superior electrical and mechanical properties, can revolutionize the fields of surface coatings and electrowetting displays, according to the researchers. A material's wettability (i.e. interaction with water) is typically constant in the absence of external influence and are classified as either water-loving (hydrophilic) or water-repelling (hydrophobic; water beads up on the surface).

Depending on the specific application, a choice between either hydrophobic or hydrophilic material is required. For electrowetting displays, for example, the hydrophilic characteristics of display material is enhanced with the help of a constant externally impressed electric current.

"What makes graphene special is that, unlike conventional bulk materials, it displays tunable surface wetting characteristics due to a change in its electron density, or by doping," said Ali Ashraf, a graduate student researcher and first author of the paper, "Doping-Induced Tunable Wettability and Adhesion of Graphene," appearing in Nano Letters.

"Our collaborative research teams have discovered that while graphene behaves typically as a hydrophobic material (due to presence of strongly held air-borne contamination on its surface), its hydrophobicity can be readily changed by changing electron density.

"Our study shows for the first time that graphene demonstrates tunable wettability - switchable hydrophobic and hydrophilic behavior - when its electron density is changed by subsurface charged polymers and metals (a.k.a. doping)," Ashraf added.

"This finding sheds lights on previous unclear links between quantum-level charge transfer and macroscopic surface wettability for graphene. This exciting finding opens new doors of possibility for tunable surface coating and electrowetting displays without continuous external electric current supply, which will translate into significant energy savings."

"In addition, we investigated another closely related property - surface adhesion," Nam said.

"We observed changes in electron density of graphene leads to a change in adhesion, which determines how graphene interacts with other hydrophobic and hydrophilic molecules, which is important for graphene-based chemical and biosensors. Our finding suggests that it is possible to make reusable, self-cleaning graphene sensors that can first interact with hydrophobic molecules for detection, and then separates from them (i.e. cleans itself) by enhanced hydrophilicity via electron density modulation."

In addition to Nam and Ashraf, co-authors include Yanbin Wu, Michael Cai Wang, Keong Yong, Tao Sun, Yuhang Jing, Richard T. Haasch, and Narayana Aluru, a professor of mechanical science and engineering, whose research group carried out theoretical modeling of this new experimental observation in this study.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Illinois College of Engineering
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
Chemists unveil cheaper, more efficient carbon capture technology
York, England (UPI) Jul 4, 2016
A team of scientists in England have found a better way to capture carbon from power plant emissions. The key to their new and improved technique is patented carbon-derived biomass material called Starbons. Starbons, which was pioneered a decade ago by scientists at the University of York, is made using biomass waste like food peelings and seaweed. Its key attribute is its porosity. Lot ... read more


CARBON WORLDS
Winning Students Selected for Future Engineers Star Trek Replicator Challenge

Theoretical climbing rope could brake falls

How water gets its exceptional properties

A drop of water as a model for the interplay of adhesion and stiction

CARBON WORLDS
MUOS-5 secure communications satellite responding to ground control

How to Improve Enterprise Ground Services for Space

Testing Confirms Intelsat EpicNG Delivers a Whole New Ballgame

MUOS-5 Secure Communications Satellite to launch June 24

CARBON WORLDS
Russia to Continue Rocket Engine Supplies to US Under Existing Contracts

India launches 20 satellites in single mission

LSU Chemistry Experiment Aboard Historic Suborbital Space Flight

Spaceflight contracts India's PSLV to launch 12 Planet Dove nanosats

CARBON WORLDS
Raytheon hits next-generation GPS milestone

China promises GPS system that's "reliable, safe and free"

China promotes int'l development of homegrown GPS system

BeiDou GPS system targets global service around 2020

CARBON WORLDS
China firm declares success in $1.5 bn Swiss offer

First British F-35 completes transatlantic crossing

Hindustan Aeronautics hands over first Tejas jets

Seven killed in Turkey military chopper crash: army

CARBON WORLDS
New discovery could better predict how semiconductors weather abuse

Researchers develop key power-splitting component for terahertz waves

New, better way to build circuits for world's first useful quantum computers

Oracle told to pay HP billions in chip dispute

CARBON WORLDS
Sentinel-1 satellites combine radar vision

Canada Launches Maritime Monitoring Satellite

Nepal, India agree to use satellite system for border pillars

DigitalGlobe Awarded Sole-Source Contract to Provide Advanced Analytic Services to the DIA

CARBON WORLDS
Scientists find bouncing droplets can remove contaminants

Household fuels exceed power plants and cars as source of smog in Beijing

Household fuels a major contributor to Beijing's infamous air pollution

Vietnam says Taiwanese steel mill to pay $500m for pollution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.