Space Industry and Business News  
CHIP TECH
Researchers create magnetic RAM
by Staff Writers
Moscow, Russia (SPX) Aug 23, 2017


A MELRAM structure.

MIPT researchers teamed up with their colleagues from the Kotelnikov Institute of Radio Engineering and Electronics (IRE) of the Russian Academy of Sciences (RAS) and the International Associated Laboratory of the Critical and Supercritical Phenomena in Functional Electronics, Acoustics, and Fluidics for a successful demonstration of a new kind of computer memory. Their paper was published in Applied Physics Letters.

A transition to the newly demonstrated type of memory could enable a substantial energy saving, as well as the instantaneous startup of devices based on this technology. Random access memory, or RAM, is one of the principal components of any computer or smartphone.

The most common type of RAM is known as dynamic random access memory, or DRAM for short. It is a semiconductor memory based on a rather simple principle. In DRAM, each memory cell consists of one capacitor and one transistor.

The transistor is used to admit current into the condenser, allowing it to be charged and discharged. The electrical charge of the capacitor stores binary information, which is conventionally represented as zeros (not charged) and ones (charged).

"So far, the RAM technology has been rapidly advancing, with memory modules becoming ever faster. However, this type of memory has one major limitation that cannot be overcome, namely its low energy efficiency," says principal investigator Sergei Nikitov, who is deputy head of MIPT's Section of Solid State Physics, Radiophysics and Applied Information Technologies, corresponding member of RAS, and the director of IRE RAS.

"In this paper, we present the magnetoelectric memory cell. It will reduce bit-reading and -writing energy consumption by a factor of 10,000 or more."

A cell in the magnetoelectric memory, also known as MELRAM, consists of two components with remarkable properties. The first of the two is a piezoelectric material. Piezoelectricity is the property of certain materials that are deformed in response to applied voltage and, conversely, generate voltage under mechanical stress.

The other MELRAM component is a layered structure characterized by a high magnetoelasticity - the dependence of magnetization on the elastic strain. Because the structure is anisotropic - that is, it is organized differently along different axes, - it can be magnetized along two directions, which correspond to the logical zero and one in the binary code.

In contrast to dynamic RAM, magnetoelectric memory cells are capable of maintaining their state: They need not be continually rewritten and do not lose information when power is cut off.

"We built a test piece about 1 millimeter across and showed that it works," says Anton Churbanov, a Ph.D. student at the Department of Physical and Quantum Electronics, MIPT. "It is worth noting that the structures we used could serve as the basis of nano-sized memory cells, whose dimensions are similar to those of regular RAM cells."

At the heart of the study is a novel data reading mechanism, providing an alternative to the sophisticated magnetic field sensors used in earlier MELRAM cells, which do not allow for easy downscaling. As it turned out, there is a simpler way to read information, which does not require such complicated arrangements.

When a voltage is applied to the memory cell, the piezoelectric layer of the structure is deformed. Depending on the nature of the strain, magnetization assumes a particular orientation, storing information. The changing orientation of the magnetic field gives rise to increased voltage in the sample. By detecting this voltage, the state of the memory cell can be determined. But the reading operation might affect magnetization; therefore, it is necessary to recommit the value that has been read to the memory cell.

The authors of the paper say their solution can be scaled down without any adverse effect on its efficiency. This makes MELRAM promising for computing hardware applications mandating low energy consumption.

Research paper

CHIP TECH
Heating quantum matter: A novel view on topology
Brussels, Belgium (SPX) Aug 22, 2017
In physical sciences, certain quantities appear as integer multiples of fundamental and indivisible elements. This quantization of physical quantities, which is at the heart of our description of Nature, made its way through the centuries, as evidenced by the antique concept of the atom. Importantly, the discovery of quantized quantities has often been associated with a revolution in our u ... read more

Related Links
Moscow Institute of Physics and Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Researchers discover new class of chemical reaction

Nanoparticle ink produces glowing holograms with simple inkjet printer

Myanmar's startups map past, shape future with virtual reality

Understanding brittle crack behaviors to design stronger materials

CHIP TECH
82nd Airborne tests in-flight communication system for paratroopers

North Dakota UAS Training Center Depends on IGC Satellite Connectivity

Envistacom wins $10M Army communications contract

New SQUID-based detector opens up new fields of study with new level of sensitivity

CHIP TECH
CHIP TECH
IAI, Honeywell Aerospace team for GPS anti-jam system

Japan launches satellite for better GPS system

Harris delivers navigation package for third GPS III satellite

Lockheed Martin Begins Modernizing Receivers for U.S. Air Force's GPS Signal Monitoring Stations

CHIP TECH
Israel finalises deal for 17 more F-35 stealth fighters

Leidos receives $727M contract for Afghan Air Force support

Face scans, robot baggage handlers - airports of the future

France and Germany announce new joint fighter program

CHIP TECH
Heating quantum matter: A novel view on topology

In Neptune, it's raining diamonds

Single molecules can work as reproducible transistors - at room temperature

New ultrathin semiconductor materials exceed some of silicon's 'secret' powers

CHIP TECH
NASA Mission to Study Atmospheric Disturbances from Marshall Islands

Man-made fossil methane emission levels larger than previously believed

Nickel key to Earth's magnetic field, research shows

How future volcanic eruptions will impact Earth's ozone layer

CHIP TECH
Gaza boy swimmer death puts spotlight on pollution crisis

Arsenic in Pakistan groundwater 'alarmingly high': study

Cambodia bans overseas exports of coastal sand

Indian factory shut for dumping dye after dogs turn blue









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.