Space Industry and Business News  
INTERNET SPACE
Researchers create hidden images with commercial inkjet printers
by Staff Writers
Washington DC (SPX) Dec 12, 2016


A new technique can be used to hide multiple images in a printed array of rods with varying conductivities. Depending on the polarization of the terahertz radiation, different concealed images appear, such as the H and V illustrated here. Image courtesy Ajay Nahata, University of Utah. For a larger version of this image please go here.

Researchers have developed a way to use commercial inkjet printers and readily available ink to print hidden images that are only visible when illuminated with appropriately polarized waves in the terahertz region of the electromagnetic spectrum. The inexpensive method could be used as a type of invisible ink to hide information in otherwise normal-looking images, making it possible to distinguish between authentic and counterfeit items, for example.

"We used silver and carbon ink to print an image consisting of small rods that are about a millimeter long and a couple of hundred microns wide," said Ajay Nahata from the University of Utah, leader of the research team. "We found that changing the fraction of silver and carbon in each rod changes the conductivity in each rod just slightly, but visually, you can't see this modification. Passing terahertz radiation at the correct frequency and polarization through the array allows extraction of information encoded into the conductivity."

In The Optical Society's journal for high impact research, Optica, the researchers demonstrated their new method to hide image information in an array of printed rods that all look nearly identical. They used the technique to conceal both grayscale and 64-color QR codes, and even embedded two QR codes into a single image, with each code viewable using a different polarization. To the naked eye the images look like an array of identical looking lines, but when viewed with terahertz radiation, the embedded QR code image becomes apparent.

"Our very easy-to-use method can print complex patterns of rods with varying conductivity," said Nahata. "This cannot easily be done even using a multimillion dollar nanofabrication facility. An added benefit to our technique is that it can performed very inexpensively."

The new technique allows printing of different shapes that form a type of metamaterial - synthetic materials that exhibit properties that don't usually exist in nature. Although there is a great deal of interest in manipulating metamaterials to better control the propagation of light, most techniques require expensive lithography equipment found in nanofabrication facilities to pattern the material in a way that produces desired properties.

Nahata and his colleagues previously developed a simple method to use an off-the-shelf inkjet printer to apply inks made with silver and carbon, which can be purchased from specialty stores online. They wanted to see if their ink-jet printing technique could create various conductivities, a parameter that is typically difficult to modify because it requires changing the type of metal applied at each spatial location. To do this using standard lithography would be time consuming and expensive because each metal would have to be applied in a separate process.

"As we were printing these rods we saw that, in many cases, we couldn't visually tell the difference between different conductivities," said Nahata. "That led to the idea of using this to encode an image without the need for standard encryption approaches."

To see if they could use the method to encode information, the researchers printed three types of QR codes, each 72 by 72 pixels. For one QR code they used arrays of rods to create nine different conductivities, each coding for one gray level. When they imaged this QR code with terahertz illumination, only 2.7 percent of the rods gave values that were different from what was designed. The researchers also used rods printed in a cross formation to create two separate QR codes that could each be read with a different polarization of terahertz radiation.

The team then created a color QR code by using non-overlapping rods of three different lengths to create each pixel. Each pixel in the image contained the same pattern of rods but varied in conductivity.

By arranging the rods in a way that minimized errors, the researchers created three overlapping QR codes corresponding to RGB color channels. Because each pixel contained four different conductivities that could each correspond to a color, a total of 64 colors was observed in the final image. The researchers said they could likely achieve even more than 64 colors with improvements in the printing process.

"We have created the capability to fabricate structures that can have adjacent cells, or pixels, with very different conductivities and shown that the conductivity can be read with high fidelity," said Nahata. "That means that when we print a QR code, we see the QR code and not any blurring or bleeding of colors."

With the very inexpensive (under $60) printers used in the paper, the technique can produce images with a resolution of about 100 microns. With somewhat more expensive but still commercially available printers, 20-micron resolution should be achievable.

Although the researchers used QR codes that are relatively simple and small, the technique could be used to embed information into more complex and detailed images using a larger canvas.

Nahata's team used terahertz radiation to read the coded information because the wavelengths in this region are best suited for imaging the resolution available from commercial inkjet printers.

The researchers are now working to expand their technique so the images can be interrogated with visible, rather than terahertz, wavelengths. This challenging endeavor will require the researchers to build new printers that can produce smaller rods to form images with higher resolutions.

The researchers are also exploring the possibility of developing additional capabilities that could make the embedded information even more secure. For example, they could make inks that might have to be heated or exposed to light of a certain wavelength before the information would be visible using the appropriate terahertz radiation.

Paper: A. Chanana, A. Paulsen, S. Guruswamy, A. Nahata, "Hiding Multi-level Multi-color Images in Terahertz Metasurfaces," Optica, 3, 12, 1466 (2016). DOI: 10.1364/optica.3.001466


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The Optical Society
Satellite-based Internet technologies






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
INTERNET SPACE
Samsung prevails over Apple in $399 mn patent appeal
Washington (AFP) Dec 7, 2016
The US Supreme Court on Tuesday overturned a $399 million patent infringement penalty imposed on Samsung for copying Apple's iPhone design, in a case watched for its implications for technology innovation. The shorthanded justices ruled 8-0 that Samsung should not be required to forfeit the entire profits from its smartphones for infringement on design components, sending the case back to a ... read more


INTERNET SPACE
Decoding cement's shape promises greener concrete

Deep-frozen helium molecules

Shape matters when light meets atom

NASA awards contract for refueling mission spacecraft

INTERNET SPACE
Japan to Launch First Military Communications Satellite on January 24

Intelsat General to provide satellite services to RiteNet for US Army network

NSA gives Type1 certification to Harris radio

Upgraded telecommunications network for Marines

INTERNET SPACE
Russia to face strong competition from China in space launch market

Vega And Gokturk-1A are present for next Arianespace lightweight mission

Antares Rides Again

Four Galileo satellites are "topped off" for Arianespace's milestone Ariane 5 launch from the Spaceport

INTERNET SPACE
OGC requests public comment on its Coverage Implementation Schema

Lockheed Martin Advances Modernization of Current GPS Ground Control System for USAF

High-Precision System for Real-Time Navigation Data of GLONASS Ready for Service

Launch of new Galileo navigation quartet

INTERNET SPACE
On Madagascar beaches, families search for MH370 clues

One ship left in MH370 underwater search

US approves $7 bn in aircraft sales to Arab allies

Pentagon defends new Air Force One after Trump slam

INTERNET SPACE
Stamping technique creates tiny circuits with electronic ink

3-D solutions to energy savings in silicon power transistors

Physicists decipher electronic properties of materials in work that may change transistors

Improving the resolution of lithography

INTERNET SPACE
Eyes in the sky

Bacterial mechanism converts nitrogen to greenhouse gas

Vega lofts Turkey's Earth observation satellite

DigitalGlobe releases first high-resolution image from WorldView-4 satellite

INTERNET SPACE
Unruly drivers undermine Paris pollution ban

Paris chokes under worst winter pollution in decade

Paradise lost: How toxic water destroyed Pakistan's largest lake

New grasses neutralize toxic pollution from bombs, explosives, and munitions









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.