Space Industry and Business News
MOON DAILY
Researchers Find New Water Reservoir On Moon
A schematic diagram of the lunar surface water cycle associated with impact glass beads.
Researchers Find New Water Reservoir On Moon
by Staff Writers
Beijing, China (SPX) Mar 28, 2023

Lunar surface water has attracted much attention due to its potential for in-situ resource utilization by future lunar exploration missions and other space missions Now, a research group led by Prof. HU Sen from the Institute of Geology and Geophysics (IGG) of the Chinese Academy of Sciences (CAS) has found that impact glass beads in Chang'e-5 (CE5) lunar soils contain some water.

Detailed studies show that these glass beads are likely a new water reservoir on the Moon, recording the dynamic ingress and egress of solar wind-derived water and acting as a buffer for the lunar surface water cycle. Many lunar missions have confirmed the presence of structural water or water ice on the Moon. There is little doubt that most of the Moon's surface harbors water, though the amount is much less than on Earth.

Surface water on the Moon displays diurnal cycles and loss to space, indicating that there should be a hydrated layer or reservoir at depth in lunar soils to sustain the retention, release, and replenishment of water on the surface of the Moon. However, previous studies of water inventory of fine mineral grains in lunar soils, impact-produced agglutinates, volcanic rocks, and pyroclastic glass beads have been unable to explain the retention, release, and replenishment of water on the surface of the Moon (i.e., the lunar surface water cycle). Therefore, there must be a yet-unidentified water reservoir in lunar soils that has the capacity to buffer the lunar surface water cycle.

Doctoral student HE Huicun, under the guidance of Prof. HU Sen, proposed that impact glass beads, a ubiquitous component in lunar soils with an amorphous nature, were a potential candidate for investigation of the unidentified hydrated layer or reservoir in lunar soils.

She systematically characterized the petrography, major element composition, water abundance, and hydrogen isotope composition of the impact glass beads returned by the CE5 mission, aiming to identify and characterize the missing water reservoir on the Moon's surface.

The CE5 impact glass beads have homogeneous chemical compositions and smooth exposed surfaces. They are characterized by water abundance up to about 2,000 ug.g-1, with extreme deuterium-depleted characteristics. The negative correlation between water abundance and hydrogen isotope composition reflects the fact that water in the CE5 impact glass beads comes from solar winds.

The researchers also analyzed water abundance along six transects in five glass beads, which showed the hydration profiles of solar wind-derived water. Some glass beads were overlapped by a later degassing event. The impact glass beads acted as a sponge for buffering the lunar surface water cycle. The researchers estimate that the amount of water contributed by impact glass beads to lunar soils varies from 3.0 + 1011 kg to 2.7 + 1014 kg.

"These findings indicate that the impact glasses on the surface of the Moon and other airless bodies in the solar system are capable of storing solar wind-derived water and releasing it into space," said Prof HU.

The study was a collaboration with Nanjing University, The Open University, The Natural History Museum, The University of Manchester, and the University of Science and Technology of China.

Research Report:A Solar Wind-Derived Water Reservoir On The Moon Hosted By Impact Glass Beads

Related Links
Institute of Geology and Geophysics - CAS
Mars News and Information at MarsDaily.com
Lunar Dreams and more

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
MOON DAILY
Scientists find water inside glass beads on the Moon
Paris (AFP) March 27, 2023
Scientists said Monday they have discovered water inside tiny beads of glass scattered across the Moon, suggesting that one day it could be extracted and used by the "explorers of tomorrow". The Moon was long believed to be dry, but over the last few decades several missions have shown there is water both on the surface and trapped inside minerals. Mahesh Anand, a professor of planetary science and exploration at the UK's Open University, told AFP that water molecules could be seen "hopping over ... read more

MOON DAILY
OpenAI's ChatGPT blocked in Italy: privacy watchdog

WVU researchers explore alternative sources to help power space

Big E3 videogame expo in US is canceled

What can we do about all the plastic waste

MOON DAILY
Northrop Grumman demonstrates platform agnostic in-flight connectivity for USAF

Silvus Technologies unveils Spectrum Dominance

Rensselaer researcher breaks through the clouds to advance satellite communication

Space Systems Command demonstrates satellite anti-jam capability

MOON DAILY
MOON DAILY
Telit Cinterion adds Dual-Band GNSS Positioning to AIROHA AG3335 Chipsets

Monogoto teams with Skylo and SODAQ to deliver NB-IoT satellite asset tracking

Quectel announces CC200A-LB satellite module for IoT

Topcon further expands MC-X Platform with all-new GNSS Option

MOON DAILY
Nine dead in crash of two US Army helicopters

European aviation sector fears CO2 rules could clip its wings

Ex-US Marine accused of helping China was lured to Australia: lawyer

Slovakia to donate 13 MiG-29 fighter jets to Ukraine

MOON DAILY
Japan unveils export control plans for chip equipment

Chiral magnetic domain walls control the quantum anomalous hall effect

New chip design to provide greatest precision in memory to date

Chinese FM says Japanese chip curbs to drive Beijing's self-reliance

MOON DAILY
Satellogic announces integration with SkyFi

BlackSky's completes commissioning within 18 hours of orbital delivered on news satellites

At the end of the dry season: CO2 pulses over Australia

Earth's anisotropic inner core structure driven by dipole geomagnetic field: Study

MOON DAILY
US sues Norfolk Southern over toxic train derailment

Toothpaste tablets and syrup on tap: US refill shops cut the container

Microplastic pollution impairs seabird gut health

Dust storms cause air pollution spike across north China

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.