Subscribe free to our newsletters via your
. Space Industry and Business News .




WATER WORLD
Researcher discovers groundwater modeling breakthrough
by Staff Writers
Laramie WY (SPX) Jul 07, 2015


University of Wyoming Professor Fred Ogden anticipates his discovery will greatly improve the reliability and functionality for hundreds of important water models used around the country and the world. Image courtesy University of Wyoming. For a larger version of this image please go here.

A University of Wyoming professor has made a discovery that answers a nearly 100-year-old question about water movement, with implications for agriculture, hydrology, climate science and other fields.

After decades of effort, Fred Ogden, UW's Cline Chair of Engineering, Environment and Natural Resources in the Department of Civil and Architectural Engineering and Haub School of Environment and Natural Resources, and a team of collaborators published their findings in the journal Water Resources Research this spring. The paper, titled "A new general 1-D vadose zone flow solution method," presents an equation to replace a difficult and unreliable formula that's stymied hydrologic modelers since 1931.

"I honestly never thought I would be involved in a discovery in my field," Ogden says.

He anticipates this finding will greatly improve the reliability and functionality for hundreds of important water models used by everyone from irrigators and city planners to climate scientists and botanists around the country and the world, as well as trigger a new surge in data collection.

In 1931, Lorenzo Richards developed a beautiful, if numerically complex, equation to calculate how much water makes it into soil over time as rainfall hits the ground surface and filters down toward the water table. That equation, known as the Richards equation and often shortened to RE, has been the only rigorous way to calculate the movement of water in the vadose zone - that is, the unsaturated soil between the water table and the ground surface where most plant roots grow.

Calculating the movement of water in the vadose zone is critical to everything from estimating return flows and aquifer recharge to better managing irrigation and predicting floods. But RE is extremely difficult to solve, and occasionally unsolvable. So, while some high-powered computer models can handle it over small geographic areas, simpler models or those covering large regions must use approximations that compromise accuracy.

For decades, hydrologists and other scientists have pursued a better way to estimate vadose zone water. Cornell University Environment and Ecology Professor Jean-Yves Parlange and Australian soil physicist John Robert Philip battled one another in the literature, proposing new equations and disproving each other - from the 1950s until Philip's untimely death in a traffic accident in 1999. Princeton Environmental Engineering and Water Resources Director Michael Celia published a partial solution in 1990 that is not reliable in all circumstances.

Ogden first worked on the problem in 1994 as a postdoctoral researcher. He teamed with Iranian hydrology engineer Bahram Saghafian, who was finishing a Ph.D. at Colorado State University, to publish an equation that estimates water "suction" in the vadose zone. In the early 2000s, Ogden advised a Ph.D. candidate named Cary Talbot, a researcher with the U.S. Army Corps of Engineers, on a project seeking a solution to the RE. The two developed a new way to represent vadose zone water.

In more recent years, the search continued, and a major National Science Foundation research grant in 2011 enabled Ogden to bring additional experts to the quest and use UW's supercomputing power to test prospective solutions.

Then, late last fall, just before the large American Geophysical Union annual meeting, Ogden and his research team discovered a novel solution, an elegant new equation that he thought would equal the RE in accuracy while greatly reducing the computing power needed to run it. He tested this solution with precipitation data from his field site in Panama.

"We ran eight months of Panama data with 263 centimeters of rain through our equation and Hydrus," Ogden says.

Hydrus is an existing supercomputer model that uses RE. The results his model generated had only 7 millimeters, or two tenths of 1 percent, difference from the results of the Hydrus model that employs Celia's solution of the RE.

"They were almost identical. That's when I knew," he says. "I felt like the guy who discovered the gold nugget in the American River in California."

What's next for the new equation? First, it is the centerpiece of Ogden's ADHydro model, a massive, supercomputer-powered model that's first simulating the water supply effects of different climate and management scenarios throughout the entire upper Colorado River Basin. From there, Ogden hopes other models will incorporate it, too.

"I think, for rigorous models, it's going to become the standard," he says. "With help from mathematicians and computer scientists, it will just get faster and better."

Furthermore, new pushes for data collection often follow technological advances, Ogden explains. He hopes this discovery will bring soil science back into relevance for water managers and lead to new soil data collection.

"We now have a reliable way to couple groundwater to surface through the soil that people have been looking for since 1931," Ogden says, almost in awe of the moment.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Wyoming
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Pact with devil? California farmers use oil firms' water
Bakersfield, United States (AFP) July 3, 2015
An efficient solution to a historic drought, or an environmentally risky pact with the devil? That's the question raised by California farmers who are irrigating their crops with waste water supplied by oil companies, in an arrangement slammed as dangerous by environmental campaigners. Driving into the parched region around Bakersfield, in the western US state's fertile Central Valley, ... read more


WATER WORLD
Study: Violent video games offer stress release, but at a cost

Lower cost ultrasound degassing now possible in processing aluminum

Making new materials with micro-explosions: ANU media release

New technique enables magnetic patterns to be mapped in 3-D

WATER WORLD
Navy engineer invents new data transmission system

Fourth MUOS arrives in Florida for August launch

Airbus DS unveils new mobile welfare communication portfolio

Britain looks to replace tactical radios

WATER WORLD
Licensed commercial spaceport to be built in Houston, Texas

More Fidelity for SpaceX In-Flight Abort Reduces Risk

Rocket Lab Announces World's First Commercial Launch Site

NovaWurks and Spaceflight Services set for payload test bed mission in 2017

WATER WORLD
Russian, Chinese Navigation Systems to Accommodate BRICS Members

Russia, India Cooperate on Space Exploration, Glonass Satellite System

Global Positioning System: A Generation of Service to the World

Blind French hikers cross mountains with special GPS

WATER WORLD
Computer glitch grounds United flights for an hour

Two dead as F-16, Cessna collide in South Carolina

Solar Impulse 2 pilot becomes aviation legend

Airbus and Mahindra to make military choppers in India

WATER WORLD
Ultrafast spectroscopy used to examine magnetoresistance systems

Could black phosphorus be the next silicon?

IBM unveils 'breakthrough' computer chip

Silver may hold key to electronics advances

WATER WORLD
Near-Earth space hosts Kelvin-Helmholtz waves

NASA data shows surfer-shaped waves in near-Earth space

Oregon experiments open window on landscape formation

Sentinel-2A completes critical first days in space

WATER WORLD
Severe harmful algal bloom for Lake Erie predicted

Pope urges dialogue, launches environmental SOS in Ecuador

The Good, the Bad, and the Algae

Water used for hydraulic fracturing varies widely across United States




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.