![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Canberra, Australia (SPX) Oct 24, 2016
Research led by The Australian National University (ANU) is helping to develop food crops with bigger yields and greater ability to cope with drought compared with today's plants. Crops such as sorghum and millet produce much more yield and are better at resisting drought and other extreme conditions compared to wheat and rice, and this research will help explain why by studying the role of a key enzyme in the process. One of the lead researchers Dr Hugo Alonso-Cantabrana said sorghum, sugarcane, millet and maize used a form of photosynthesis called C4 that made them more efficient at transforming carbon dioxide, light and water into sugars. "They do this by taking up carbon dioxide from the air and concentrating it in specialised cells deep in the leaf," said Dr Alsonso-Cantabrana from the Research School of Biology and the ARC Centre of Excellence for Translational Photosynthesis at ANU. Co-researcher Hannah Osborn, an ANU PhD student, said wheat and rice, known as C3 plants, used the oldest form of photosynthesis, while plants using C4 photosynthesis had an advantage in conditions with high temperatures and low rainfall. "C4 plants can capture carbon dioxide from the air while losing less water from their leaves, but little is known about what determines the efficiency of this process," said Ms Osborn, from the ARC Centre of Excellence for Translational Photosynthesis and the Research School of Biology at ANU. To investigate the process, the team studied the role of carbonic anhydrase (CA), the first enzyme that carbon dioxide encounters in the leaf of a model C4 plant Setaria viridis, which is also known as green millet. "This enzyme is vital for C4 photosynthesis as it helps carbon dioxide from the air to dissolve quickly into the liquid of the cell," Ms Osborn said. "This is the first time that we have been able to transform this model C4 plant to have less of the CA enzyme and look at the effects on photosynthesis and water loss. "We think that under adverse conditions such as drought or high temperatures, having a lot of this enzyme could be advantageous for the plant." The team will continue the research to test the role of the enzyme under extreme environmental conditions.
Related Links Australian National University Farming Today - Suppliers and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |