Space Industry and Business News  
BIO FUEL
Research shows black plastics could create renewable energy
by Staff Writers
Swansea UK (SPX) Jul 22, 2019

The process by which plastics are converted to carbon nanotube material.

Research from Swansea University has found how plastics commonly found in food packaging can be recycled to create new materials like wires for electricity - and could help to reduce the amount of plastic waste in the future.

While a small proportion of the hundreds of types of plastics can be recycled by conventional technology, researchers found that there are other things that can be done to reuse plastics after they've served their original purpose.

The research, published in The Journal for Carbon Research, focuses on chemical recycling which uses the constituent elements of the plastic to make new materials.

While all plastics are made of carbon, hydrogen and sometimes oxygen, the amounts and arrangements of these three elements make each plastic unique. As plastics are very pure and highly refined chemicals, they can be broken down into these elements and then bonded in different arrangements to make high value materials such as carbon nanotubes.

Dr Alvin Orbaek White, a Ser Cymru II Fellow at the Energy Safety Research Institute (ESRI) at Swansea University said: "Carbon nanotubes are tiny molecules with incredible physical properties. The structure of a carbon nanotube looks a piece of chicken wire wrapped into a cylinder and when carbon is arranged like this it can conduct both heat and electricity. These two different forms of energy are each very important to control and use in the right quantities, depending on your needs.

"Nanotubes can be used to make a huge range of things, such as conductive films for touchscreen displays, flexible electronics fabrics that create energy, antennas for 5G networks while NASA has used them to prevent electric shocks on the Juno spacecraft."

During the study, the research team tested plastics, in particular black plastics, which are commonly used as packaging for ready meals and fruit and vegetables in supermarkets, but can't be easily recycled. They removed the carbon and then constructed nanotube molecules from the bottom up using the carbon atoms and used the nanotubes to transmit electricity to a light bulb in a small demonstrator model.

Now the research team plan to make high purity carbon electrical cables using waste plastic materials and to improve the nanotube material's electrical performance and increase the output, so they are ready for large-scale deployment in the next three years.

Dr Orbaek White said: "The research is significant as carbon nanotubes can be used to solve the problem of electricity cables overheating and failing, which is responsible for about 8% of electricity is lost in transmission and distribution globally.

"This may not seem like much, but it is low because electricity cables are short, which means that power stations have to be close to the location where electricity is used, otherwise the energy is lost in transmission.

"Many long range cables, which are made of metals, can't operate at full capacity because they would overheat and melt. This presents a real problem for a renewable energy future using wind or solar, because the best sites are far from where people live."

Research paper


Related Links
Swansea University
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Left out to dry: A more efficient way to harvest algae biomass
Tsukuba, Japan (SPX) Jul 11, 2019
A team at the University of Tsukuba introduced a new procedure of harvesting energy and organic molecules from algae using nanoporous graphene and porous graphene foams. By developing a reusable system that can evaporate water at high rate without the need for centrifugation or squeezing. This research has a great potential for the application of producing cleaner, cheaper, and more efficient biofuels, vitamins, and chemicals. In the fight against global climate change, algae biomass is a ve ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Electronic chip mimics the brain to make memories in a flash

NUS 'smart' textiles boost connectivity between wearable sensors by 1,000 times

Perseverance is key to NASA's advancement of alloys for bearings and gears

New developments with Chinese satellites over the past decade

BIO FUEL
Newly established US Space Agency offers sneak peek at satellite layout

AEHF-5 encapsulated and prepared for launch

Corps begins fielding mobile satellite communication system

AFRL demonstrates world's first daytime free-space quantum communication enabled by adaptive optics

BIO FUEL
BIO FUEL
Europe's GPS rival Galileo suffers outage

Second Lockheed Martin-Built GPS III Satellite Ready for July 25 Liftoff

Planes landing in Israel see GPS signals disrupted

NASA Eyes GPS at the Moon for Artemis Missions

BIO FUEL
eFlyer 2 Prototype Begins New Flight Test Program with Siemens Production Motor

Air Canada flight makes emergency landing in Hawaii

Britain's first P-8A Poseidon takes flight near Boeing plant

Bulgaria to acquire eight F-16 fighter planes in $1.25B deal

BIO FUEL
NIST's quantum logic clock returns to top performance

EU fines chipmaker Qualcomm 242 mn euros for 'predatory' pricing

Speediest quantum operation 200 times faster than before

Will your future computer be made using bacteria

BIO FUEL
PlanetiQ secures $18.7M Series B financing round

First new DoD NEXRAD weather radar installed at Cannon Air Force Base

Airbus to develop CO3D Earth Observation programme for CNES

Scientists discover the biggest seaweed bloom in the world

BIO FUEL
Shanghai leads battle against China's rising mountain of trash

Tourist rush at Australia's Uluru before climb ban

Light pollution puts Nemo's offspring at risk

Troubled waters: China-fuelled cruise boom sparks environment fears









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.