Space Industry and Business News  
ENERGY TECH
Research reveals carbon films can give microchips energy storage capability
by Staff Writers
Philadelphia PA (SPX) Feb 12, 2016


This is the layered structure of the carbon films on silicon chips. Image courtesy A. Demortiere/LRCS. For a larger version of this image please go here.

After more than half a decade of speculation, fabrication, modeling and testing, an international team of researchers led by Drexel University's Dr. Yury Gogotsi and Dr. Patrice Simon, of Paul Sabatier University in Toulouse, France, have confirmed that their process for making carbon films and micro-supercapacitors will allow microchips and their power sources to become one and the same.

The discovery, which was reported in the Feb. 12 edition of the journal Science, is the culmination of years of collaborative research by the team who initially created the carbide-derived carbon film material for microsupercapacitors and published the concept paper in Science in 2010. Since then, their goal has been to show that it's possible to physically couple the processing center of an electronic device - the microchip - with its energy source.

"This has taken us quite some time, but we set a lofty goal of not just making an energy storage device as small as a microchip - but actually making an energy storage device that is part of the microchip and to do it in a way that is easily integrated into current silicon chip manufacturing processes," said Simon, who led the research under the aegis of the French research network on electrochemical energy storage (RS2E). "With this achievement, the future is now wide open for chip and personal electronics manufacturers."

It confirms a belief that the group has held since the materials were first fabricated - that these films are versatile enough to be seamlessly integrated into the systems that power silicon-based microchips that run devices from your laptop to your smart watch.

The challenges that the group faced in the development of the material were questions about its compatibility, its mechanical stability and durability for use on flexible substrates. With these answered, it opens up a myriad of possibilities for carbon films to work their way into silicon chips - including building microscale batteries on a chip.

"The place where most people will eventually notice the impact of this development is in the size of their personal electronic devices, their smart phones, fitbits89 and watches," said Gogotsi, Distinguished University and Trustee Chair Professor in the Department of Materials Science Engineering who directs the A.J. Drexel Nanomaterials Institute in Drexel's College of Engineering. "Even more importantly," Gogotsi adds, "on-chip energy storage is needed to create the Internet of Things - the network of all kinds of physical objects ranging from vehicles and buildings to our clothes embedded with electronics, sensors, and network connectivity, which enables these objects to collect and exchange data. This work is an important step toward that future."

The researchers' method for depositing carbon onto a silicon wafer is consistent with microchip fabrication procedures currently in use, thus easing the challenges of integration of energy storage devices into electronic device architecture. As part of the research, the group showed how it could deposit the carbon films on silicon wafers in a variety of shapes and configurations to create dozens of supercapacitors on a single silicon wafer.

Supercapacitors have been desirable devices to use in microelectronics because they can store a great deal of energy for their size, they can be charged and discharged their energy extremely quickly and their lifespan is nearly limitless. With this discovery, the path is clear for microchip manufacturers to take a big step forward in the way they design their products.

Beyond the energy storage applications, these carbon films offer good prospects for the development of elastic coatings with a low coefficient of friction that can be used in lubricant-free sliding parts, such as dynamic seals. They may also be used in production of membranes for gas filtration, water desalination or purification, because their pore size is in the range of single molecules. The carbon films produced by this method are quite versatile and may find applications in many areas.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Drexel University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Electric-car battery materials could harm key soil bacteria
Washington DC (SPX) Feb 12, 2016
The growing popularity of battery-powered cars could help reduce greenhouse gas emissions, but they are not entirely Earth friendly. Problems can creep in when these batteries are disposed of. Scientists, in a new study in ACS' journal Chemistry of Materials, are reporting that compounds increasingly used in lithium-ion batteries are toxic to a type of soil-dwelling bacteria that plays an import ... read more


ENERGY TECH
Scientists from MIPT gain insights into 'forbidden' chemistry

Some 5,000 years ago, silver mining on the shores of the Aegean Sea

Flow phenomena on solid surfaces

Twisted X-rays unravel the complexity of helical structures

ENERGY TECH
ViaSat tapped to provide tactical terminals for Apache helicopters

Harris wins place on military communications contract

General Dynamics MUOS-Manpack radio supports government testing of MUOS network

Raytheon to produce, test Navy Multiband Terminals

ENERGY TECH
Arianespace to launch two ViaSat high capacity satellites

SpaceX Conducts Hover Tests

Space Launch System's first flight will launch small Sci-Tech cubesats

Initial launcher assembly clears Ariane 5 for its payload integration process

ENERGY TECH
Russia Developing Glonass Satellite And Latest Bird Launched

China to launch nearly 40 Beidou navigation satellites in five years

45th SW supports Air Force GPS IIF-12 launch aboard an Atlas V

United Launch Alliance launches GPS IIF-12 satellite for U.S. Air Force

ENERGY TECH
Civil aviation takes first step towards capping carbon emissions

Climate change will slow transatlantic flights: study

F-35 deficiencies raise Pentagon concerns

Piloted, Electric Propulsion-Powered Experimental Aircraft Underway

ENERGY TECH
New thin film transistor may lead to flexible devices

Electron's 1-D metallic surface state observed

Organic crystals allow creating flexible electronic devices

Researchers develop hack-proof RFID chips

ENERGY TECH
Consistency of Earth's magnetic field history surprises scientists

Sentinel-3A fully tanked

Mission teams prepare for critical days

China releases images captured by HD earth observation satellite

ENERGY TECH
Living with contamination: fear and anger in Flint

Romania asks UNESCO to protect planned open-cast goldmine site

Lithium battery catalyst found to harm key soil microorganism

Volkswagen, Flint point to weakness in US environmental protections









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.