Space Industry and Business News  
MOON DAILY
Research helps explain formation of ringed Lunar crater
by Staff Writers
Providence RI (SPX) Oct 28, 2016


"In the past, our view of Orientale basin was largely related to its surface features, but we didn't know what the subsurface structure looked like in detail. It's like trying to understand how the human body works by just looking at the surface," said Jim Head, a geologist at Brown, GRAIL science team member and co-author of the research. "The beauty of the GRAIL data is that it is like putting Orientale in an X-ray machine and learning in great detail what the surface features correspond to in the subsurface."

Using data from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, scientists have shed new light on the formation of a huge bull's-eye-shaped impact feature on the Moon. The findings, described in two papers published in the journal Science, could help scientists better understand how these kinds of giant impacts influenced the early evolution of the Moon, Mars and Earth.

Formed about 3.8 billion years ago, the Orientale basin is located on the southwestern edge of the Moon's nearside, just barely visible from Earth. The basin's most prominent features are three concentric rings of rock, the outermost of which has a diameter of nearly 580 miles.

Scientists have debated for years about how those rings formed. Thanks to targeted close passes over Orientale by the twin GRAIL spacecraft in 2012, mission scientists think they've finally figured it out. The GRAIL data revealed new details about the interior structure of Orientale. Scientists used that information to calibrate a computer model that, for the first time, was able to recreate the rings' formation.

"Big impacts like the one that formed Orientale were the most important drivers of change on planetary crusts in the early solar system," said Brandon Johnson, a geologist at Brown University, lead author of one of the papers and a co-author of the other.

"Thanks to the tremendous data supplied by GRAIL, we have a much better idea of how these basins form, and we can apply that knowledge to big basins on other planets and moons."

In one of the Science papers, a research team led by MIT's Maria Zuber, a Brown Ph.D. graduate, performed a detailed examination of the data returned by GRAIL.

"In the past, our view of Orientale basin was largely related to its surface features, but we didn't know what the subsurface structure looked like in detail. It's like trying to understand how the human body works by just looking at the surface," said Jim Head, a geologist at Brown, GRAIL science team member and co-author of the research.

"The beauty of the GRAIL data is that it is like putting Orientale in an X-ray machine and learning in great detail what the surface features correspond to in the subsurface."

One of the key mysteries the data helped to solve involves the size and location of Orientale's transient crater, the initial depression created when the impactor blasted material away from the surface. In smaller impacts, that initial crater is left behind. But in larger collisions, the rebound of the surface following the impact can sometimes obliterate any trace of that initial impact point.

Some researchers had thought that one of Orientale's rings might represent the remains of the transient crater. But the GRAIL data showed that's not the case. Instead Orientale's gravity signature suggests the transient crater was somewhere between its two inner rings, measuring between 200 and 300 miles across. Any recognizable surface remnants of that crater were erased by the aftermath of the collision.

Constraining the size of the transient crater enabled to team to estimate how much material was blasted out of the surface during the collision. The team calculates that about 816,000 cubic miles of rock was blasted away. For Head, those findings helped to tie together years for research on Orientale.

"I wrote my first paper on the Orientale Basin in 1974, over forty years ago, and I have been studying it ever since," he said. "We now know what parts of the crust were removed, what parts of the mantle and deeper interior were uplifted, and how much ejecta was redistributed over the whole Moon."

Modeling Orientale's Rings
For the other paper, Johnson led a team of researchers who used the GRAIL data to develop a computer model of the impact and its aftermath. The model that best fit the GRAIL data estimates that Orientale was formed by an object about 40 miles across traveling at about 9 miles per second.

The model was able to recreate Orientale's rings and explain how they formed. It showed that as the crust rebounded following the impact, warm and ductile rocks in the subsurface flowed inward toward the impact point. That inward flow caused the crust above to crack and slip, forming the cliffs, several kilometers high, that compose the outer two rings.

The innermost ring was formed by a different process. In smaller impacts, the rebound of the crust can form a mound of material in the center of a crater, called a central peak. But Orientale's central peak was too large to be stable. That material flowed back outward, eventually mounding in a circular fashion, forming the inner ring.

"This was a really intense process," Johnson said. "These several-kilometer cliffs and the central ring all formed within minutes of the initial impact."

This is the first time a model has been able to reproduce these rings, Johnson said.

"GRAIL provided the data we needed to provide a foundation for the models," he said. "That gives us confidence that we're capturing the processes that actually formed these rings."

Ring Basins Elsewhere
Orientale is the youngest and best-preserved example of a multi-ring basin anywhere in the solar system, but it's certainly not the only one. Armed with an understanding of Orientale, scientists can investigate how these processes play out elsewhere.

"There are several basins of this kind on Mars," Johnson said "But compared to the Moon, there's a lot more geology that happened after these impacts that degrades them. Now that we have a better understanding of how the basins formed, we can make better sense of the processes that came after."

Head says that this research is yet another example of how our own Moon helps us understand the rest of the solar system.

"The Moon in some ways is a laboratory full of well-preserved features that we can analyze in great detail," Head said. "Thanks to Maria Zuber's leadership, GRAIL continues to help us understand how the Moon evolved and how those processes relate to other planets and moons."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Brown University
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
MOON DAILY
Russia plans to revive lunar rover moon exploration program
Moscow (Sputnik) Oct 26, 2016
The Russian Academy of Sciences' Space Council has plans to revive a moon exploration program using lunar rovers, Russian media reported, citing a laboratory head from the academy's Space Research Institute. According to the Izvestia newspaper, there are plans to start work on the design of a spacecraft in 2016 within the framework of the Luna-Lunokhod project. "Yes, the decision on ... read more


MOON DAILY
You can now print your own 3D model of the universe

Spacecraft operation for the next generation

Terma radar for Royal Malaysian Navy

Space-based droplet dynamics lessons

MOON DAILY
Lockheed Martin gets $92 million military satellite contract modification

Russia develops new satellite communication system for military use

Arizona aerospace company wins $19M Navy satellite contract

Canada defence dept selects Newtec for first DVB-S2X Airborne Modem

MOON DAILY
Vega And Gokturk-1A are present for next Arianespace lightweight mission

Russia to face strong competition from China in space launch market

Antares Rides Again

Four Galileo satellites are "topped off" for Arianespace's milestone Ariane 5 launch from the Spaceport

MOON DAILY
No GPS, no problem: Next-generation navigation

Australia's coordinates out by more than 1.5 metres: scientist

US Air Force awards Lockheed Martin $395M Contract for two GPS 3 satellites

SMC exercises contract options to procure two additional GPS III satellites

MOON DAILY
Russian Helicopters to build training center in Peru

Raytheon to produce T-100 trainer in Mississippi

U.S. Navy's King Stallion helicopter completes operational testing

Lockheed Martin receives two F-22 Raptor contract modifications

MOON DAILY
Making silicon-germanium core fibers a reality

A new class of materials could realize quantum computers

Flexible optical design method for superconducting nanowire single-photon detectors

Exploring defects in nanoscale devices for possible quantum computing applications

MOON DAILY
Hosted Payloads Offers Remedy for Looming Air Force Weather Forecasting Gap

It's what underneath that counts

Studies offer new glimpse of melting under Antarctic glaciers

NASA satellite sees sulfur dioxide diffuse across northern Iraq

MOON DAILY
Researchers invent 'perfect' soap molecule that is better for the environment

300 million children breathe heavily toxic air: UNICEF

UBC study finds optimal walking and cycling speeds to reduce air pollution inhalation

India capital chokes on toxic smog after Diwali









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.