Subscribe free to our newsletters via your
. Space Industry and Business News .




EARLY EARTH
Reign of the giant insects ended with the evolution of birds
by Staff Writers
Santa Cruz CA (SPX) Jun 12, 2012


The study provided weak support for an effect on insect size from pterosaurs, the flying reptiles that evolved in the late Triassic about 230 million years ago. There were larger insects in the Triassic than in the Jurassic, after pterosaurs appeared.

Giant insects ruled the prehistoric skies during periods when Earth's atmosphere was rich in oxygen. Then came the birds. After the evolution of birds about 150 million years ago, insects got smaller despite rising oxygen levels, according to a new study by scientists at the University of California, Santa Cruz.

Insects reached their biggest sizes about 300 million years ago during the late Carboniferous and early Permian periods. This was the reign of the predatory griffinflies, giant dragonfly-like insects with wingspans of up to 28 inches (70 centimeters).

The leading theory attributes their large size to high oxygen concentrations in the atmosphere (over 30 percent, compared to 21 percent today), which allowed giant insects to get enough oxygen through the tiny breathing tubes that insects use instead of lungs.

The new study takes a close look at the relationship between insect size and prehistoric oxygen levels. Matthew Clapham, an assistant professor of Earth and planetary sciences at UC Santa Cruz, and Jered Karr, a UCSC graduate student who began working on the project as an undergraduate, compiled a huge dataset of wing lengths from published records of fossil insects, then analyzed insect size in relation to oxygen levels over hundreds of millions of years of insect evolution.

Their findings are published in the June 4 online early edition of the Proceedings of the National Academy of Sciences (PNAS).

"Maximum insect size does track oxygen surprisingly well as it goes up and down for about 200 million years," Clapham said. "Then right around the end of the Jurassic and beginning of the Cretaceous period, about 150 million years ago, all of a sudden oxygen goes up but insect size goes down. And this coincides really strikingly with the evolution of birds."

With predatory birds on the wing, the need for maneuverability became a driving force in the evolution of flying insects, favoring smaller body size.

The findings are based on a fairly straightforward analysis, Clapham said, but getting the data was a laborious task. Karr compiled the dataset of more than 10,500 fossil insect wing lengths from an extensive review of publications on fossil insects.

For atmospheric oxygen concentrations over time, the researchers relied on the widely used "Geocarbsulf" model developed by Yale geologist Robert Berner. They also repeated the analysis using a different model and got similar results.

The study provided weak support for an effect on insect size from pterosaurs, the flying reptiles that evolved in the late Triassic about 230 million years ago. There were larger insects in the Triassic than in the Jurassic, after pterosaurs appeared.

But a 20-million-year gap in the insect fossil record makes it hard to tell when insect size changed, and a drop in oxygen levels around the same time further complicates the analysis.

Another transition in insect size occurred more recently at the end of the Cretaceous period, between 90 and 65 million years ago. Again, a shortage of fossils makes it hard to track the decrease in insect sizes during this period, and several factors could be responsible. These include the continued specialization of birds, the evolution of bats, and a mass extinction at the end of the Cretaceous.

"I suspect it's from the continuing specialization of birds," Clapham said. "The early birds were not very good at flying. But by the end of the Cretaceous, birds did look quite a lot like modern birds."

Clapham emphasized that the study focused on changes in the maximum size of insects over time. Average insect size would be much more difficult to determine due to biases in the fossil record, since larger insects are more likely to be preserved and discovered.

"There have always been small insects," he said. "Even in the Permian when you had these giant insects, there were lots with wings a couple of millimeters long. It's always a combination of ecological and environmental factors that determines body size, and there are plenty of ecological reasons why insects are small."

.


Related Links
University of California - Santa Cruz
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
New understanding of terrestrial formation has significant and far reaching future implications
Norregade, Denmark (SPX) Jun 08, 2012
The current theory of continental drift provides a good model for understanding terrestrial processes through history. However, while plate tectonics is able to successfully shed light on processes up to 3 billion years ago, the theory isn't sufficient in explaining the dynamics of the earth and crust formation before that point and through to the earliest formation of planet, some 4.6 billion y ... read more


EARLY EARTH
New circuits work in high radiation levels

Apple maps a path to mobile throne

How does Dolomite form

Amazon offer Cloud Player app for iPhone

EARLY EARTH
Northrop Grumman Develops, Demonstrates SmartNode Pod

IGC and 3Di Team Up to Support Iraqi Military Network

Indian border force eyes sat-phone upgrade

India Plans To Launch First Military Satellite

EARLY EARTH
NuSTAR Arrives at Island Launch Site

Another Ariane 5 begins its initial build-up at the Spaceport

Boeing Receives DARPA Airborne Satellite Launch Study Contract

Sea Launch Delivers the Intelsat 19 Spacecraft into Orbit

EARLY EARTH
Apple fends off Android challenge with maps, Siri

Boeing, Raytheon and Harris to Pursue GPS Control Segment Sustainment Contract

Revamped Google maps goes offline for mobile

USAF Awards Lockheed Martin GPS III Flight Operations Contract

EARLY EARTH
Air industry head asks EU to postpone carbon tax

Iraqi Airways looks to update fleet

Medvedev confirms fifth-generation bomber

China says to build 70 new airports by 2015

EARLY EARTH
SFU helps quantum computers move closer

Rice, UCLA slash energy needs for next-generation memory

Unique approach to materials allows temperature-stable circuits

Integrated sensors handle extreme conditions

EARLY EARTH
UH research team uses airborne LiDAR to unveil Honduran archaeological ruins

Apple unveils maps program, challenging Google

Taking action for GMES

CryoSat goes to sea

EARLY EARTH
'Mysterious' haze blankets Chinese metropolis

German agency to incinerate Bhopal waste: India

Brazilian slum's green oasis a boon to recycling

Sao Paulo environment czar roots for cities at Rio+20




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement