Subscribe free to our newsletters via your
. Space Industry and Business News .




ENERGY TECH
Refocusing research into high-temperature superconductors
by Staff Writers
Munich, Germany (SPX) Aug 05, 2014


At the PUMA three-axis spectrometer of Technische Universitaet Muenchen's Research Neutron Source Heinz Maier-Leibnitz in Garching (Germany) Dr. Jitae Park proved that the formation of nematic phases does not stem from doping effects, but rather is a result of sudden changes in the preferential direction of the movement of electron spins. Image courtesy Volker Lannert and DAAD.

Below a specific transition temperature superconductors transmit electrical current nearly loss-free. For the best of the so-called high-temperature superconductors, this temperature lies around -180 C - a temperature that can be achieved by cooling with liquid nitrogen.

The location of atomic nuclei and binding electrons in a material is determined by its crystal structure. However, electrons additionally have an electromagnetic angular momentum, referred to as spin. When many spins become coupled in a material, electromagnetic disturbances with a preferential orientation can form, creating so-called nematic phases. Many researchers see a key to understanding the phenomenon of high-temperature superconducting in these nematic phases.

Spin-dynamics or doping effect?
A group of scientists discovered microscopic impurities during investigations under a scanning tunneling microscope. They thus suspected that these impurities were responsible for the formation of the nematic phases - analog to silicon, where doping with minute impurities induces electric conductivity.

Dr. Jitae Park, a scientist at the Technische Universitaet Muenchen (TUM), and his colleagues at the Beijing National Laboratory for Condensed Matter Physics and the Department of Physics and Astronomy of Rice University in Houston/Texas, have now shown that this is not the case, but rather that a completely different effect is at work.

Using the PUMA three-axis spectrometer at the Heinz Maier-Leibniz Center in Garching (Germany), they investigated samples of a ferrous high-temperature superconductor doped with small amounts of nickel at various temperatures. The scientists proved that the formation of nematic phases has no direct relationship to doping with nickel.

Collective movements of electron spins, in contrast, have a strong effect on the formation of nematic phases. These form at temperatures that are significantly higher than the transition temperatures. The moment, the superconducting effect reaches its maximum, the nematic phase disappears completely.

"With our experiment, we have shown that the formation of nematic phases does not stem from doping effects, but rather is a result of sudden changes in the preferential direction of the movement of electron spins", explains Jitae Park, who carried out the experiment at the FRM II Research Neutron Source of TU Muenchen.

"Researchers will now be able to focus their future research on the relationship between spin dynamics in nematic phases and high-temperature superconductivity."

Efficient experimental design
Neutron scattering experiments on magnetism are extremely elaborate because they normally require numerous experiments at various neutron sources around the globe to obtain a complete set of data. In this case, the measurement data were collected in a series of cleverly designed experiments at the PUMA instrument in the record time of only four weeks.

The experiment also represented a particular challenge because the researchers could only use very small crystals. The scientists chose an iron pnictide, a compound made of iron, barium and arsenic, which they doped with small amounts of nickel. However, under normal conditions this material forms twin crystals, which do not allow measuring of nematic phases.

"The formation of twin crystals can be suppressed by applying pressure," says Jitae Park, "but as a result we could use only very small crystals." Thus the researchers opted to carry out the experiment at the FRM II Research Neutron Source in Garching because of its very high neutron flux.

.


Related Links
Technische Universitaet Muenchen
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Physicists unlock nature of high-temperature superconductivity
Chicago IL (SPX) Jul 29, 2014
Physicists have identified the "quantum glue" that underlies a promising type of superconductivity - a crucial step towards the creation of energy superhighways that conduct electricity without current loss. The research, published online in the Proceedings of the National Academy of Sciences, is a collaboration between theoretical physicists led by Dirk Morr, professor of physics at the ... read more


ENERGY TECH
Disney develops tool to design inflatable characters and structures

NASA Experts, Russia Sign Radiation Safety Protocol Despite Sanctions

New material structures bend like microscopic hair

Military training and simulation revenues to remain steady

ENERGY TECH
Fourth MUOS Communication Satellite Clears Launch-Simulation Test

US looks to Japan space program to close Pacific communications gap

U.S. government using commercial Inmarsat 5 satellite

Lockheed Martin Selected For USAF Satellite Hosted Payload Initiative

ENERGY TECH
US Launches Two Surveillance Satellites From Cape Canaveral

United Launch Alliance Marks 85th Successful Launch

US aerospace firm outlines New Zealand-based space program

China to launch satellite for Venezuela

ENERGY TECH
Boeing GPS IIF satellite launched by Air Force

GPS-guided shell in full-rate production

Targeting device that helps reduce collateral damage tested by the Army

China releases geoinformation industry plan

ENERGY TECH
Asia's richest man targets aviation and Irish firm AWAS

The evolution of airplanes

China's military says drills affecting civil flights

Newest Tiger attack helo tested in Djibouti

ENERGY TECH
On-chip topological light

NIST ion duet offers tunable module for quantum simulator

Diamond defect interior design

Spin-based electronics: New material successfully tested

ENERGY TECH
Study of Aerosols Stands to Improve Climate Models

NASA's IceCube No Longer On Ice

New NASA Studies to Examine Climate/Vegetation Links

Quiet Year Expected for Amazon Forest Fires in 2014

ENERGY TECH
Mercury in the global ocean

Emergency declared in Canada over mine tailings spill

Scientists warn time to stop drilling in the dark

Malaysia air quality 'unhealthy' as haze obscures skies




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.