Space Industry and Business News
ENERGY TECH
Recycling of batteries: 70% of lithium recovered
stock image only
Recycling of batteries: 70% of lithium recovered
by Staff Writers
Karlsruhe, Germany (SPX) Mar 31, 2023

Recovering up to 70 percent of lithium from battery waste without corrosive chemicals, high temperatures, and prior sorting of materials being required: This is achieved by a recycling method developed by Karlsruhe Institute of Technology (KIT). The method combines mechanical processes with chemical reactions and enables inexpensive, energy-efficient, and environmentally compatible recycling of any type of lithium-ion batteries. The results are reported in Nature Communications Chemistry (DOI: 10.1038/s42004-023-00844-2).

Lithium-ion batteries are omnipresent in our life. They are not only used for wireless power supply of notebooks, smartphones, toys, remote controls, and other small devices, but also are the most important energy storage systems for the rapidly growing electric mobility sector. Increasing use of these batteries eventually results in the need for economically and ecologically sustainable recycling methods. Presently, mainly nickel and cobalt, copper and aluminum, as well as steel are recovered from battery waste for reuse.

Lithium recovery still is expensive and hardly profitable. Existing recovery methods mostly are of metallurgical character and consume a lot of energy and/or produce hazardous by-products. In contrast to this, mechanochemical approaches based on mechanical processes to induce chemical reactions promise to reach a higher yield and sustainability with a smaller expenditure.

Suited for Various Cathode Materials
Such a method has now been developed by the Energy Storage Systems Department of KIT's Institute for Applied Materials (IAM-ESS), the Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU) established by KIT in cooperation with Ulm University, and EnBW Energie Baden-Wurttemberg AG. It is presented in Nature Communications Chemistry. The method reaches a lithium recovery rate of up to 70 percent without corrosive chemicals, high temperatures, and prior sorting of materials being required.

"The method can be applied for recovering lithium from cathode materials of various chemical compositions and, hence, for a large range of commercially available lithium-ion batteries," says Dr. Oleksandr Dolotko of IAM-ESS and HIU, the first author of the publication. "It enables inexpensive, energy-efficient, and environmentally compatible recycling."

Reaction at Room Temperature
The researchers use aluminum as reducing agent in the mechanochemical reaction. As aluminum is already contained in the cathode, no additional substances are required. The method works as follows: First, the battery waste is ground. Then, this material reacts with aluminum to metallic composites with water-soluble lithium compounds. Lithium is recovered by dissolving these compounds in water and subsequent heating to make the water evaporate.

As the mechanochemical reaction takes place at ambient temperature and pressure, the method is highly energy-efficient. Another advantage is its simplicity, which will facilitate use on an industrial scale, as large amounts of batteries will have to be recycled in the near future already.

Research Report:Universal and efficient extraction of lithium for lithium-ion battery recycling using mechanochemistry

Related Links
Karlsruhe Institute of Technology
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
Probe where the protons go to develop better fuel cells
Fukuoka, Japan (SPX) Mar 29, 2023
Solid oxide fuel cells, or SOFC, are a type of electrochemical device that generates electricity using hydrogen as fuel, with the only 'waste' product being water. Naturally, as we strive to reduce our carbon output and mitigate the casualties of the climate crisis, both business and academia have taken major interest in the development of SOFCs. In what can potentially accelerate the development of more efficient SOFCs, a research team led by Kyushu University has uncovered the chemical innerwork ... read more

ENERGY TECH
OpenAI's ChatGPT blocked in Italy: privacy watchdog

Big E3 videogame expo in US is canceled

WVU researchers explore alternative sources to help power space

What can we do about all the plastic waste

ENERGY TECH
Northrop Grumman demonstrates platform agnostic in-flight connectivity for USAF

Silvus Technologies unveils Spectrum Dominance

Rensselaer researcher breaks through the clouds to advance satellite communication

Space Systems Command demonstrates satellite anti-jam capability

ENERGY TECH
ENERGY TECH
Telit Cinterion adds Dual-Band GNSS Positioning to AIROHA AG3335 Chipsets

Monogoto teams with Skylo and SODAQ to deliver NB-IoT satellite asset tracking

Quectel announces CC200A-LB satellite module for IoT

Topcon further expands MC-X Platform with all-new GNSS Option

ENERGY TECH
Airbus to open 2nd plane assembly line in China, double output

European aviation sector fears CO2 rules could clip its wings

Amsterdam airport to ban private jets, night flights

'Unbearable': Vietnam airport construction dust blankets homes, school

ENERGY TECH
China calls for WTO review of US-led chip export restrictions

Chinese FM says Japanese chip curbs to drive Beijing's self-reliance

China launches security probe into US chipmaker Micron

Japan unveils export control plans for chip equipment

ENERGY TECH
Improving the efficiency of maps

Ozone-depleting CFCs hit record despite ban: study

Surprise effect: Methane cools even as it heats

Joint NASA, CNES water-tracking satellite reveals first stunning views

ENERGY TECH
Toothpaste tablets and syrup on tap: US refill shops cut the container

Microplastic pollution impairs seabird gut health

Dust storms cause air pollution spike across north China

Scientists make 'disturbing' find on remote island: plastic rocks

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.