Space Industry and Business News  
CARBON WORLDS
Rapid and mass production of graphene, using microwaves
by Staff Writers
Ulsan, South Korea (SPX) Dec 14, 2016


Reducing graphene oxide sheets (prGON) into pristine graphene, using 1-to-2 second pulses of microwaves. Image courtesy UNIST. For a larger version of this image please go here.

Graphene, a material that could usher in the next generation of electronic and energy devices, could be closer than ever to mass production, thanks to microwaves. A new study by an international team of researchers from UNIST and Rutgers University has proved that it is now possible to produce high quality graphene, using a microwave oven.

The team reports that this new technique may have solved some of graphene's difficult manufacturing problems. The findings of the research have been published in the September issue of the prestigious journal Science.

This study was jointly conducted by Dr. Jieun Yang, an alumna of UNIST, Prof. Hyeon Suk Shin (School of Natural Science) of UNIST, Prof. Hu Young Jeon (School of Natural Science) of UNIST, Prof. Manish Chhowalla of Rutgers University, and five other researchers from Rutgers University, New Brunswick, NJ, United States.

Graphene comes from a base material of graphite, the cheap material in the 'lead' of pencils. The structure of graphite consists of many flat layers of graphene sheets. One of the most promising ways to achieve large quantities of graphene is to exfoliate graphite into individual graphene sheets by using chemicals.

However, the oxygen exposure during the process may cause some inevitable side reactions, as it can ultimately be very damaging to the individual graphene layers.

Indeed, oxygen distorts the pristine atomic structure of graphene and degrades its properties. Therefore, removing oxygen from graphene oxide to obtain high-quality graphene has been a significant challenge over the past two decades for the scientific community working on graphene.

Dr. Yang and her research team have discovered that baking the exfoliated graphene oxide for just 1-to-2 second pulses of microwaves, can eliminate virtually all of the oxygen from graphene oxides.

"The partially reduced graphene oxides absorb microwave energy, produced inside a microwave oven ," says Dr. Yang, the lead author of the study. She adds, "This not only efficiently eliminates oxygen functional groups from graphene oxides, but is also capable of rearranging defective graphene films."

The results indicate that the new graphene exibits substantially reduced oxygen concentration of 4% much lower than the currently existing graphene with an oxygen content in the range of 15% to 25%.

Prof. Shin states, "Countries around the world, such as South Korea, U.S., England, and China have been investing heavily in research for the affordable, mass commercialization of graphene."

He adds, "The current method for mass-producing high-quality graphene lacks reproducibility, but holds huge untapped market potential. Therefore, securing the fundamental technology for mass production of graphene is an extremely important matter in terms of commercializing future promising industries."

The study's co-author, Prof. Manish Chhowalla is an associate chair in the Department of Materials Science and Engineering in Rutgers' School of Engineering and Director of the Rutgers Institute for Advanced Materials, Devices and Nanotechnology.

Prof. Chhowalla has been working on a joint research project with Prof. Shin and Prof. Jeon of UNIST. Dr. Jieun Yang, a former student of Prof. Shin is now working as a post-doctoral associate in Chhowalla's group at Rutgers University.

Journal Reference: Damien Voiry, Jieun Yang, Jacob Kupferberg, Raymond Fullon, Calvin Lee, Hu Young Jeong, Hyeon Suk Shin, and Manish Chhowalla, "High-quality graphene via microwave reduction of solution-exfoliated graphene oxide", Science, (2016).


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Ulsan National Institute of Science and Technology
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
New synthetic diamond is harder than a jeweler's diamond
Acton, Australia (UPI) Dec 12, 2016
How do you cut through a jeweler's diamond or other hard materials? How about a diamond? Researchers in Australia discovered a rare diamond during lab experimentation - a purer, smaller form of a diamond found at meteorites impact sites. Initial analysis suggests their creation is harder than a jeweler's diamond. "This new diamond is not going to be on any engagement rings," Jod ... read more


CARBON WORLDS
Decoding cement's shape promises greener concrete

Deep-frozen helium molecules

Shape matters when light meets atom

NASA awards contract for refueling mission spacecraft

CARBON WORLDS
Japan to Launch First Military Communications Satellite on January 24

Intelsat General to provide satellite services to RiteNet for US Army network

NSA gives Type1 certification to Harris radio

Upgraded telecommunications network for Marines

CARBON WORLDS
Russia to face strong competition from China in space launch market

Vega And Gokturk-1A are present for next Arianespace lightweight mission

Antares Rides Again

Four Galileo satellites are "topped off" for Arianespace's milestone Ariane 5 launch from the Spaceport

CARBON WORLDS
OGC requests public comment on its Coverage Implementation Schema

Lockheed Martin Advances Modernization of Current GPS Ground Control System for USAF

High-Precision System for Real-Time Navigation Data of GLONASS Ready for Service

Launch of new Galileo navigation quartet

CARBON WORLDS
On Madagascar beaches, families search for MH370 clues

One ship left in MH370 underwater search

US approves $7 bn in aircraft sales to Arab allies

Pentagon defends new Air Force One after Trump slam

CARBON WORLDS
Stamping technique creates tiny circuits with electronic ink

3-D solutions to energy savings in silicon power transistors

Physicists decipher electronic properties of materials in work that may change transistors

Improving the resolution of lithography

CARBON WORLDS
Eyes in the sky

Bacterial mechanism converts nitrogen to greenhouse gas

Vega lofts Turkey's Earth observation satellite

DigitalGlobe releases first high-resolution image from WorldView-4 satellite

CARBON WORLDS
Unruly drivers undermine Paris pollution ban

Paris chokes under worst winter pollution in decade

Paradise lost: How toxic water destroyed Pakistan's largest lake

New grasses neutralize toxic pollution from bombs, explosives, and munitions









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.