Subscribe free to our newsletters via your
. Space Industry and Business News .




BLUE SKY
Radio Waves Carry News of Climate Change
by Staff Writers
Tel Aviv, Israel (SPX) Aug 01, 2013


By examining satellite-gathered data on the temperature in the upper atmosphere and comparing results to measurements of radio wave amplitudes collected on the ground, the researchers were able to uncover a clear correlation, consistent over time. As the upper atmosphere gets colder, radio signals lose their strength.

The ionosphere, one of the regions of the upper atmosphere, plays an important role in global communications. Ionized by solar radiation, this electricity-rich region is used for the transmission of long wave communications, such as radio waves.

Now Prof. Colin Price of Tel Aviv University's Department of Geophysical, Atmospheric and Planetary Sciences, working alongside PhD candidate Israel Silber, has discovered that the radio waves reflecting back to Earth from the ionosphere offer valuable news on climate change as well.

Their research shows that the strength of radio signals on the ground is a reliable indicator of temperature change above. Prof. Price and his team used simple radio antennae on the ground to measure radio waves broadcast by navigational transmitters around the globe, then compared information on the strength of these radio signals with data on temperature fluctuations in the upper atmosphere.

They discovered that climate change in the upper atmosphere - caused by an abundance of greenhouse gases - may lead to a greater absorption of radio waves. Weaker signals could therefore be indicative of greater climate change.

Detailed in the Journal of Geophysical Research, this simple, cost-effective measurement can be a valuable contribution to the ongoing effort to track climate change, says Prof. Price, adding to measurements of ground and lower atmospheric temperatures to create a more holistic picture.

Global warming, upper atmospheric cooling
On the Earth's surface and in the lower atmosphere, an increase of greenhouse gases has a warming effect, the gases acting as a "blanket" and keeping heat from escaping from the Earth into space. But these gases, including carbon dioxide, are increasing in the upper atmosphere as well, where they have a cooling effect.

When cooled, the ionosphere contracts and descends into the atmosphere to where air is denser - leading to a higher absorption of radio waves, Prof. Price explains.

By examining satellite-gathered data on the temperature in the upper atmosphere and comparing results to measurements of radio wave amplitudes collected on the ground, the researchers were able to uncover a clear correlation, consistent over time. As the upper atmosphere gets colder, radio signals lose their strength.

While the sun is certainly the driving force behind changes in temperature in this region, it accounts for only 60 to 70 percent of temperature variations, says Prof. Price. The remaining variability could not be systematically measured until now. By adding measurements of radio waves taken on the ground to solar radiation estimates, researchers can now explain approximately 95 percent of temperature changes in the upper atmosphere.

Degrees of change
According to Prof. Price, this new technique will be a valuable addition to current methods of monitoring climate change, such as the measurement of ground temperatures. Without the need for expensive equipment like satellites, monitoring the upper atmosphere can be done inexpensively and continuously.

And because temperatures in the upper atmosphere fluctuate more dramatically than those on the ground - for every one degree of warming in the lower atmosphere, there is a corresponding ten degree cooling in the upper atmosphere - changes are far easier to monitor.

Using this system might reveal more about the ionosphere than ever before. The region is notoriously difficult to monitor; there are no weather balloons or airplanes that can go high enough, and it is too low for orbiting satellites. But with this method, it could be possible to study long and short term changes in the ionosphere, such as the impact of solar storms or thunderstorms on the upper atmosphere.

.


Related Links
Tel Aviv University
The Air We Breathe at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BLUE SKY
Planetary 'runaway greenhouse' more easily triggered
Seattle WA (SPX) Aug 01, 2013
It might be easier than previously thought for a planet to overheat into the scorchingly uninhabitable "runaway greenhouse" stage, according to new research by astronomers at the University of Washington and the University of Victoria published July 28 in the journal Nature Geoscience. In the runaway greenhouse stage, a planet absorbs more solar energy than it can give off to retain equili ... read more


BLUE SKY
Discovery could lead to end of sunburn pain

Alphasat deploys its giant reflector in orbit

Largest neuronal network simulation achieved using K computer

Mission Criticality of Space Mechanisms - Part 1

BLUE SKY
New Military Communications Satellite Built By Lockheed Martin Launches

US Navy Poised to Launch Lockheed Martin-Built Secure Communications Satellite for Mobile Users

Northrop Grumman Moves New B-2 Satellite Communications Concept to the High Ground

Canada links up on secure U.S. military telecoms network

BLUE SKY
Next Ariane 5 is readied to receive its dual-satellite payload

Russia to restart Proton rocket launches after crash

Japanese rocket takes supplies, robot to space station

SpaceX Awarded Launch Reservation Contract for Largest Canadian Space Program

BLUE SKY
Satellite tracking of zebra migrations in Africa is conservation aid

'Spoofing' attack test takes over ship's GPS navigation at sea

Orbcomm Globaltrak Completes Shipment Of Fuel Monitoring Solution In Afghanistan

Lockheed Martin GPS III Satellite Prototype To Help Cape Canaveral Air Force Station Prep For Launch

BLUE SKY
South Korea resumes bidding in jet fighter deal

Lockheed Martin to Offer Universal Mission Equipment Package for US Army Helicopters

Bahrain eyes Eurofighter: BAE

US Navy, Boeing Sign $Two Billion Order for 13 P-8A Poseidon Aircraft

BLUE SKY
Speed limit set for ultrafast electrical switch

NRL Researchers Discover Novel Material for Cooling of Electronic Devices

Nanotechnology breakthrough is big deal for electronics

Broadband photodetector for polarized light

BLUE SKY
Lockheed Completes Solar UV Imager For GOES-R Enviro Tests

GOES-R Satellite Magnetometer Boom Deployment Successful

NASA's Van Allen Probes Discover Particle Accelerator in the Heart of Earth's Radiation Belts

Seeing Photosynthesis from Space: NASA Scientists Use Satellites to Measure Plant Health

BLUE SKY
Pollution blamed for drop in Beijing tourism: state media

Poisoned dumpling trial held in China

Thai firm understating oil slick fallout: Greenpeace

Oil spill hits Thai tourist island




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement