Space Industry and Business News  
INTERNET SPACE
Queen's researcher's 'miracle material' discovery could end cracked smart devices
by Staff Writers
Belfast UK (SPX) Jun 05, 2017


illustration only

Currently, most parts of a smart phone are made of silicon and other compounds, which are expensive and break easily, but with almost 1.5 billion smart phones purchased worldwide last year, manufacturers are on the lookout for something more durable and less costly.

Dr Elton Santos from Queen's University's School of Mathematics and Physics, has been working with a team of top-notch scientists from Stanford University, University of California, California State University and the National Institute for Materials Science in Japan, to create new dynamic hybrid devices that are able to conduct electricity at unprecedented speeds and are light, durable and easy to manufacture in large scale semiconductor plants.

The team found that by combining semiconducting molecules C60 with layered materials, such as graphene and hBN, they could produce a unique material technology, which could revolutionise the concept of smart devices.

The winning combination works because hBN provides stability, electronic compatibility and isolation charge to graphene while C60 can transform sunlight into electricity. Any smart device made from this combination would benefit from the mix of unique features, which do not exist in materials naturally. This process, which is called van der Waals solids, allows compounds to be brought together and assembled in a pre-defined way.

Dr Elton Santos explains: "Our findings show that this new 'miracle material' has similar physical properties to Silicon but it has improved chemical stability, lightness and flexibility, which could potentially be used in smart devices and would be much less likely to break.

"The material also could mean that devices use less energy than before because of the device architecture so could have improved battery life and less electric shocks."

He added: "By bringing together scientists from across the globe with expertise in chemistry, physics and materials science we were able to work together and use simulations to predict how all of the materials could function when combined - and ultimately how these could work to help solve every day problems.

"This cutting-edge research is timely and a hot-topic involving key players in the field, which opens a clear international pathway to put Queen's on the road-map of further outstanding investigations."

The project initially started from the simulation side, where Dr. Santos predicted that such assembly of hBN, graphene and C60 could result in a solid with remarkable new physical and chemical properties. Then, he talked with his collaborators Professor Alex Zettl and Dr. Claudia Ojeda-Aristizabal at the University of California, and California St University in Long Beach (CA) about the findings. There was a strong synergy between theory and experiments throughout the project.

Dr Santos said: "It is a sort of a 'dream project' for a theoretician since the accuracy achieved in the experiments remarkably matched what I predicted and this is not normally easy to find. The model made several assumptions that have proven to be completely right."

The findings, which have been published in one of the most prestigious journals in the world ACS Nano, open the doors for further exploration of new materials. One issue that still needs to be solved with the team's current research is that graphene and the new material architecture is lacking a 'band gap', which is the key to the on-off switching operations performed by electronic devices.

However, Dr Santos' team is already looking at a potential solution - transition metal dichalcogenides (TMDs). These are a hot topic at the moment as they are very chemically stable, have large sources for production and band gaps that rival Silicon.

He explains: "By using these findings, we have now produced a template but in future we hope to add an additional feature with TMDs. These are semiconductors, which by-pass the problem of the band gap, so we now have a real transistor on the horizon."

INTERNET SPACE
Apple says payouts from App Store total $70 bn
San Francisco (AFP) June 1, 2017
Apple said Thursday it has paid out more than $70 billion to app developers since opening its App Store in 2008, and that the ecosystem is still growing. "People everywhere love apps and our customers are downloading them in record numbers," said Philip Schiller, Apple's senior vice president of marketing, in a statement ahead of next week's annual developer conference by the iPhone maker. ... read more

Related Links
Queen's University Belfast
Satellite-based Internet technologies


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

INTERNET SPACE
Bamboo inspires optimal design for lightness and toughness

Model for 2-D materials based RRAM found

New scaling law predicts how wheels drive over sand

Space junk could destroy satellites, hurt economies

INTERNET SPACE
Airbus further extends channel partner program for military satellite communications in Asia

Radio communications have surprising influence on Earth's near-space environment

Navy receiving data terminal sets from Leonardo DRS

European country orders Harris tactical radios

INTERNET SPACE
INTERNET SPACE
GIS is a powerful tool that should be used with caution

Japan launches satellite in bid for super accurate GPS system

exactEarth Broadens Small Vessel Tracking Offering

Chinese firms develop BeiDou navigation applications

INTERNET SPACE
Orbital ATK to produce components for B-2 stealth bomber

HH-60W Combat Rescue Helicopter passes design review

Britain's Royal Navy delivers Sea King helicopters to Pakistan

Saab contracted for maintenance of Gripen fighters

INTERNET SPACE
Wafer-thin magnetic materials developed for future quantum technologies

Controlled creation of quantum emitter arrays

A new spin on electronics

Using graphene to create quantum bits

INTERNET SPACE
The heat is on for Sentinel-3B

exactEarth Launches Revolutionary Global Real-Time Maritime Tracking and Information Service

Earth is a jewel, says astronaut after six months away

SES-14 integrates NASA ultraviolet space spectrograph

INTERNET SPACE
Mining for answers on abandoned mines

Scott Pruitt: EPA chief who urged Trump to ditch climate pact

Man-made air pollution in Europe dates back 2,000 years

Taiwan steel plant opens in Vietnam after fish deaths









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.