Space Industry and Business News  
TIME AND SPACE
Quantum recurrence: Everything goes back to the way it was
by Staff Writers
Vienna, Austria (SPX) Feb 27, 2018

illustration only

It is one of the most astonishing results of physics: when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, will return almost exactly to their starting positions after some time.

This "Poincare Recurrence Theorem" is the foundation of modern chaos theory. For decades, scientists have investigated how this theorem can be applied to the world of quantum physics. Now, researchers at TU Wien (Vienna) have successfully demonstrated a kind of "Poincare recurrence" in a multi-particle quantum system. The results have been published in the journal Science.

An Old Question, Revisited
At the end of the 19th century, the French scientist Henri Poincare studied systems which cannot be fully analysed with perfect precision - for example solar systems consisting of many planets and asteroids, or gas particles, which keep bumping into each other.

His surprising result: every state which is physically possible will be occupied by the system at some point - at least to a very good degree of approximation. If we just wait long enough, at some point all planets will form a straight line, just by coincidence. The gas particles in a box will create interesting patterns, or go back to the state in which they were when the experiment started.

A similar theorem can be proved for quantum systems. There, however, completely different rules apply: "In quantum physics, we have to come up with a completely new way of addressing this problem", says Professor Jorg Schmiedmayer from the Institute for Atomic and Subatomic Physics at TU Wien. "For very fundamental reasons, the state of a large quantum system, consisting of many particles, can never be perfectly measured. Apart from that, the particles cannot be seen as independent objects, we have to take into account that they are quantum mechanically entangled."

There have been attempts to demonstrate the effect of "Poincare recurrence" in quantum systems, but until now this has only been possible with a very small number of particles, whose state was measured as precisely as possible. This is extremely complicated and the time it takes the system to return to its original state increases dramatically with the number of particles.

Jorg Schmiedmayers team at TU Wien, however, chose a different approach: "We are not so much interested in the complete inner state of the system, which cannot be measured anyway", says Bernhard Rauer, first author of the publication. "Instead we want to ask: which quantities can we observe, that tell us something interesting about the system as a whole? And are there times at which these collective quantities return to their initial value?"

The team studied the behaviour of an ultracold gas, consisting of thousands of atoms, which is kept in place by electromagnetic fields on a chip. "There are several different quantities describing the characteristics of such a quantum gas - for example coherence lengths in the gas and correlation functions between different points in space.

These parameters tell us, how closely the particles are linked by quantum mechanical effects", says Sebastian Erne, who was responsible for the theoretical calculations necessary for the project. "Our everyday intuition is not used to dealing with these quantities, but for a quantum systems, they are crucial."

Recurrence Discovered - in Collective Quantities
By measuring such quantities, which do not refer to single particles, but characterize the system as a whole, it was indeed possible to observe the long-sought quantum recurrence. And not only that: "With our atom chip, we can even influence the time it takes the system to return to one particular state", says Jorg Schmiedmayer.

"By measuring this kind of recurrence, we learn a lot about the collective dynamics of the atoms - for example about the speed of sound in the gas or about scattering phenomena of density waves."

The old question, whether quantum systems show recurrences, can finally be answered: Yes, they do - but the concept of recurrence has to be slightly redefined. Instead of trying to map out the complete inner quantum state of a system, which cannot be measured anyway, it makes more sense to concentrate on quantities which can be measured in quantum experiments. These quantities can be observed to drift away from their initial value - and to return to their initial state eventually.

Research paper


Related Links
Vienna University of Technology
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
New hole-punched crystal clears a path for quantum light
College Park MD (SPX) Feb 20, 2018
Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. Now, a collaboration of researchers from the University of Maryland's Joint Quantum Institute (JQI), led by Associate Professor Mohammad Hafezi and Professor Edo Waks, has created a photonic chip that both generates single photons, and steers them around. Hafezi and Waks are both JQI Fellows with affiliations in the Departments ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Latest updates from NASA on IMAGE Recovery

Radioactive cylinder found on Lebanon coast: authority

Researchers demonstrate promising method for improving quantum information processing

Silk fibers could be high-tech 'natural metamaterials'

TIME AND SPACE
British astronaut hails 'groundbreaking' Airbus satellite

Northrop Grumman gets production, support contracts for E-2D Hawkeye

Studies prove superior performance of HTS for Government customers

SatCom options meet demanding connectivity requirements for helicopters

TIME AND SPACE
TIME AND SPACE
Why Russia is one step ahead of US Army's plans for future GPS

Europe claims 100 million users for Galileo satnav system

Airbus selected by ESA for EGNOS V3 program

Pentagon probes fitness-app use after map shows sensitive sites

TIME AND SPACE
Trump, Boeing finalize cheaper deal for new Air Force One

Lockheed awarded $158M for support of U.S., foreign F-35 programs

Air Force awards contract for jet fighter training programs

France to block Chinese group taking control of Toulouse airport

TIME AND SPACE
New technology standard could shape the future of electronics design

Qualcomm open to further takeover talks if Broadcom boosts price

Forging a quantum leap in quantum communication

Antiferromagnets prove their potential for spin-based information technology

TIME AND SPACE
NASA space laser completes 2,000-mile road trip

How does GEOS-5-based planetary boundary layer height and humidity vary across China?

New partnership aids sustainable growth with earth observations

CloudSat Exits the 'A-Train'

TIME AND SPACE
Gabon accuses France's Veolia of pollution

UK, EU spar over who will be greenest after Brexit

German nights get brighter - but not everywhere

The plastics industry is leaking huge amounts of microplastics









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.