Subscribe free to our newsletters via your
. Space Industry and Business News .




TIME AND SPACE
Quantum physics on tap
by Staff Writers
Montreal, Canada (SPX) May 21, 2015


Due to the quantum nature of helium at very low temperature, each atom in this simulation is represented as a fluctuating cluster of tiny spheres separated by spring-like links. The computer code which produced the simulation was developed at the University of Vermont and can probe how atoms cooperate to form a superfluid at the nanoscale. Image courtesy Adrian Del Maestro. Watch the video on the research here.

We all know intuitively that normal liquids flow more quickly as the channel containing them tightens. Think of a river flowing through narrow rapids. But what if a pipe were so amazingly tiny that only a few atoms of superfluid helium could squeeze through its opening at once? According to a longstanding quantum-mechanics model, the superfluid helium would behave differently from a normal liquid: far from speeding up, it would actually slow down.

For more than 70 years, scientists have been studying the flow of helium through ever smaller pipes. But only recently has nanotechnology made it possible to reach the scale required to test the theoretical model, known as the Tomonaga-Luttinger theory (after the scientists who developed it).

Now, a team of McGill University researchers, with collaborators at the University of Vermont and at Leipzig University in Germany, has succeeded in conducting experiments with the smallest channel yet - less than 30 atoms wide. In results published online in Science Advances, the researchers report that the flow of superfluid helium through this miniature faucet does, indeed, appear to slow down.

"Our results suggest that a quantum faucet does show a fundamentally different behaviour," says McGill physics professor Guillaume Gervais, who led the project. "We don't have the smoking gun yet. But we think this a great step toward proving experimentally the Tomonaga-Luttinger theory in a real liquid."

The zone where physics changes
Insights from the research could someday contribute to novel technologies, such as nano-sensors with applications in GPS systems. But for now, Gervais says, the results are significant simply because "we're pushing the limit of understanding things on the nanoscale. We're approaching the grey zone where all physics changes."

Prof. Adrian Del Maestro from the University of Vermont has been employing high-performance computer simulations to understand just how small the faucet has to be before this new physics emerges. "The ability to study a quantum liquid at such diminutive length scales in the laboratory is extremely exciting as it allows us to extend our fundamental understanding of how atoms cooperate to form the superfluid state of matter," he says.

"The superfluid slowdown we observe signals that this cooperation is starting to break down as the width of the pipe narrows to the nanoscale" and edges closer to the exotic one-dimensional limit envisioned in the Tomonaga-Luttinger theory.

Building what is probably the world's smallest faucet has been no simple task. Gervais hatched the idea during a five-minute conversation over coffee with a world-leading theoretical physicist. That was eight years ago. But getting the nano-plumbing to work took "at least 100 trials - maybe 200," says Gervais, who is a fellow of the Canadian Institute for Advanced Research.

A beam of electrons as drill bit
Using a beam of electrons as a kind of drill bit, the team made holes as small as seven nanometers wide in a piece of silicon nitride, a tough material used in applications such as automotive diesel engines and high-performance ball bearings.

By cooling the apparatus to very low temperatures, placing superfluid helium on one side of the pore and applying a vacuum to the other, the researchers were able to observe the flow of the superfluid through the channel. Varying the size of the channel, they found that the maximum speed of the flow slowed as the radius of the pore decreased.

The experiments take advantage of a unique characteristic of superfluids. Unlike ordinary liquids - water or maple syrup, for example - superfluids can flow without any viscosity. As a result, they can course through extremely narrow channels; and once in motion, they don't need any pressure to keep going. Helium is the only element in nature known to become a superfluid; it does so when cooled to an extremely low temperature.

An inadvertent breakthrough
For years, however, the researchers were frustrated by a technical glitch: the tiny pore in the silicon nitride material kept getting clogged by contaminants. Then one day, while Gervais was away at a conference abroad, a new student in his lab inadvertently deviated from the team's operating procedure and left a valve open in the apparatus. "It turned out that this open valve kept the hole open," Gervais says. "It was the key to getting the experiment to work. Scientific breakthroughs don't always happen by design!"

Prof. Bernd Rosenow, a quantum physicist at Leipzig University's Institute for Theoretical Physics, also contributed to the study. "Critical flow and dissipation in a quasi-one-dimensional superfluid," Pierre-Francois Duc, Michel Savard, Matei Petrescu, Bernd Rosenow, Adrian Del Maestro, Guillaume Gervais. Science Advances, published online May 15, 2015. 10.1126/sciadv.1400222.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
McGill University
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Physicists observe real-time restructuring of electron cloud in attoseconds
Moscow, Russia (SPX) May 25, 2015
The recombination of electron shells in molecules, taking just a few dozen attoseconds (a billionth of a billionth of a second), can now be viewed "live," thanks to a new method developed by MIPT researchers and their colleagues from Denmark, Japan and Switzerland. An article detailing the results of their study has been published in the journal Nature Communications. In recent years, scie ... read more


TIME AND SPACE
Defects can 'Hulk-up' materials

Seashell strength inspires stress tests

Patent for Navy small space debris tracker

Nanomaterials inspired by bird feathers turn light into color

TIME AND SPACE
IOC status for upgraded French AWACS aircraft

Russian Radio-Electronic Forces to Conduct Drills in Armenian Mountains

Thales granted multiple-award IDIQ contract for Army radios

German ships receiving Indra's satellite communications terminals

TIME AND SPACE
Initial Ariane 5 assembly completed for July launch of dual payloads

Mexico Wanted to Cancel Satellite Launch on Russian Carrier Rocket

SpaceX cargo ship returns to Earth in ocean splashdown

Commission on Proton Rocket Failure to Finish Investigation by End of May

TIME AND SPACE
Satellites make a load of difference to bridge safety

Advanced Navigation Releases Interface and Logging Unit

Raytheon delivers hardware for next-gen USAF GPS system

Russia, China Agree on Joint Exploitation of Glonass Navigation Systems

TIME AND SPACE
New F-35 work for Kongsberg Defense

Australia touts industry's contribution to F-35 program

USMC F-35Bs undergoing shipboard operational tests

Airline chief casts doubt on plane hacking claim

TIME AND SPACE
New options for spintronic devices

Cheap radio frequency antenna printed with graphene ink

Mission possible: This device will self-destruct when heated

The next step in DNA computing: GPS mapping

TIME AND SPACE
NASA Soil Moisture Mission Begins Science Operations

In the Field: SMAP Gathers Soil Data in Australia

Mischief makers prompt Google to halt public map edits

Space technology identifies vulnerable regions in West Africa

TIME AND SPACE
Greenpeace India vows to win 'malicious' funds battle

Wetlands continue to reduce nitrates

Bacteria the newest tool in detecting environmental damage

Mining pollution alters fish genetics in southwest England




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.